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FOREWORD

This report was prepared by the Armour Research Foundation, Chicago,
Illinois, under USAF Contract No. AF 33(616)-8489. This contract was
performed under Project No. 1395, "Flight Vehicle Design", Task No. 139502,
"Radiation Shield Weight Study". The work was administered under the
direction of the Directorate of Advanced Systems Planning, Deputy for Tech-
nology, Aeronautical Systems Division with Sheldon B. Simmons* succeeded
by H. G. Kasten" and in turn succeeded by Thomas J. McGuire, acting as
project engineer.

The study presented began in June 1961 and concluded in September
1962 after a time-extension. The aim of the program was to conduct a
comprehensive research study into the field of spacecraft crew shielding
for the Van Allen radiation belt and solar flare environment by means of
electrostatic and magnetostatic devices, and, based on 1970 state-of-the-art,
to determine the feasibility of magnetostatic and electrostatic shielding.

The work reported herein was done under the direction of Robert F.
Tooper, Research Physicist in the Plasma and Electron Physics Section,
Physics Division, Armour Research Foundation of Illinois Institute of Tech-
nology. Important contributions to this report have been made by others.
The section dealing with the mass of the structure was largely written by
Sidney W. Kash. Parts of the chapter on charged particles in space were
written by Thomas G. Stinchcomb and Raymond C. Barrall. The section on
shielding effectiveness in Chapter 4 was written by William 0. Davies.
Thomas N. Casselman made contributions to the chapter on electrostatic
shielding, as did S. W. Kash and Richard L. Watkins. The author wishes
to thank Thomas Engelhart for his valuable suggestions concerning the trans-
formation of Eqs. (4. 29) into a form suitable for numerical integration and
for his able programming of the systelm (4. 49) with initial conditions (4. 50)
(4. 54) (4. 58) (4. 63) for the UNIVAC 1105 computer, and Richard Steck for
establishing a preliminary shielded-volume program for the IBM 7090, by
means of which data leading to Figs. 4. 13 and 4. 14 were obtained. Eugene
Titus kindly checked the derivation of the formula (4. 80) for the vector
potential of a cylindrical solenoid. The figures were drawn by Emil S. Burger,
Charles R. Camplin, Chester F. Gawlik and Hugo E. Nelson. The manu-
script was carried through many difficult drafts by Mrs. Betty Williams,
who also did the final typing.
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ABSTRACT

This report discusses the shielding of personnel against charged
particles in space using electric or magnetic fields. The energy distri-
bution and other characteristics of charged particles in space are
summarized. The operation and stability of an electrostatic shield (two
concentric charged conducting spheres) for protection against 1-Mev
electrons and 500-Mev protons is discussed. Shielded regions for charges
in a magnetic dipole field are described. A method is given for calculating
trajectories of particles incident on a magnetic dipole in a parallel beam,
with sample trajectories illustrated. The Vector potential of a cylindrical
solenoid is used to get the shielded region for L/R = 1.00, R/Cst = 0.40.
The mass of conductors and structure of superconducting solenoids are
calculated in terms of the geometry and dipole moment. A non-optimum
sample design has a magnetic moment 5. 66 x 1012 gauss cm 3 , radius and
length 4 meters, weighs 417, 000 lb, and protects ,v50 meters 3 from 1-Bev
protons. A single-turn magnetic shield could be made 1/10 the mass of
a comparable passive shield for 1-Bev protons. Structural considerations
and preliminary shielded volume studies indicate that further decrease in
mass could be obtained using an optimized cylindrical solenoid. Recommenda-
tions for future work emphasize further studies of cylindrical solenoids and
other current configurations.

This technical documentary report hes been reviewed and is approved.

F RE D D .. ORA7 ~O, SR.
Technical Director
Directorate of Advanced Systems Planning
Deputy for Technology
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1. INTRODUCTION

An important problem in manned space flight is to protect the crew

from ambient charged particle radiation. In the Van Allen zones or during

a Class Z or higher solar flare dosage rates from ionizing radiation may

reach such a level as to cause acute sudden radiation injury. Because of

this, interest in shielding requirements and methods of shielding has been

high. Several authors have discussed protection of personnel from the

environmental radiation danger during space missions (see for example

References 10, 15, 16, 29, 31, 32), but most have considered only the

use of passive shielding materials. Whereas on earth protection against

an arbitrarily strong radiation field can be achieved simply by using large

quantities of shielding material, in space bulk shielding is restricted

strongly by the payload-lifting capabilities of boosters.

Since most of the high-energy particles in space are electrically charged,

electric or magnetic fields could be used to deflect the particles away from

some protected area. Thus shielding would be accomplished by "active"

instead of "passive" means, and the possibility exists that a saving in pay-

load weight for the same shielded volume could be affected thereby. The

purpose of this study was to determine the feasibility of active shielding

methods both for space missions in the vicinity of the earth (lunar or cislunar

missions) and for interplanetary voyages.

The primary purpose of considering active as opposed to passive shielding

is weight reduction for systems stopping the primary charged particles or

reducing their energy, but this picture is complicated by the following effects.

First, a shielding system which degrades the energy of incoming particles

may increase the effective dosage rate because low-energy particles have a

higher relative biological effectiveness (RBE). Thus it is desirable to have

a shield which reduces the flux of charged particles in certain .regions without

decreasing the particle energies. Second, the stopping or slowing of charged

particles in passive shielding materials produces "secondartes" which add

co the dose rate. Protons on interacting with matter produce neutrons and

mesons; electrons on passing near atomic nuclei produce deceleration

Manuscript released by the author January 1963 for publication as an
ASD Technical Documentary Report.



electromagnetic radiation (Bremmstrahlung) which appears in the form of

high energy photons or x-rays. Both neutrons and Bremmstrahlung x-rays

are uncharged and hence have great penetrating power when passing through

matter; also they are not easily deflected by electromagnetic fields. A fair

comparison between passive and active shielding methods should include the

effect of secondaries. In some cases it is possible that the use of a passive

shield without extra provision for stopping the secondaries would give rise

to a higher dose rate than if no shielding at all were used. In practice the

calculation of effects due to secondary production is difficult and is not

carried out in the majority of treatments. A significant advantage of active

shielding is that either large volumes of bulk material are not required or

else the system can be designed so that bulky parts are not exposed to pri-

mary particles. Secondaries would be much less of a problem in active

shielding devices than with passive systems.

At the outset it would seem simplest to use electrostatic fields to deflect

charged particles. For example, a uniformly charged spherical conducting

shell could be used to repel an omnidirectional flux of particles below a

certain energy if the particles all have charges of the same sign. It can be

shown that it is feasible to build and charge such an electrode and that the

device will provide adequate shielding if all particles have charges of the

same sign. But both positive and negative charged particles are found in the

actual space environment. For instance, both protons and electrons occur

in the Van Allen belts. Although one ordinarily thinks of solar flares as

producing only high energyjprotons and possibly nuclei of the lighter elements,

interplanetary space is filled with low energy plasma streaming out from the

sun in the form of the "solar wind". The solar plasma contains an approxi-

mately equal number of electrons and positive ions so that the material as a

whole is electrically neutral. Now a spherical electrostatic shield stopping,

say, 500 Mev protons would accelerate either Van Allen electrons or electrons

in the solar wind to energies slightly over 500 Mev. Such a device, although

shielding against the protons, would produce a concentrated flux of high

energy electrons. These electrons would not of themselves have any great

penetrating power but would produce very dangerous x-rays on interacting

with matter, whether spacecraft cabin or human tissue.



In principle an electrostatic shield consisting of two concentric charged

spheres could be used as a shield agai.ist both positive and negative particles.

Suppose one wishes to use such a shield for protection against 500 Mev

protons and 1 Mev electrons (nominal values for the Van Allen belt). The

outer sphere is charged to 500 million volts potential; this is just sufficient,

to stop the incoming protons, but accelerates the electrons until they have

energies of 501 Mev per particle, which enables them to pass through the

thin outer sphere with little energy loss or secondary production. Now

suppose the inner sphere is given a potential with respect to the outer sphere

of minus 501 million volts, or minus one million volts with respect to infinity.

Then the electrons will have their energy reduced to zero, and the protons

will not be accelerated since the potential at a point outside the outer sphere

is independent of the potential on the inner sphere. Thus shielding against

both protons and electrons would be achieved with little secondary production.

Practical considerations make the concentric sphere electrostatic shield

unfeasible. It is difficult to charge two isolated bodies to predetermined

potentials, and even harder to maintain those potentials when the electrodes

are subject to continual bombardment by a beam of charged particles. Both

spheres must be very large, and the outer sphere must be much larger than

the inner, in order that the electric field in the intervening region may be

less than the breakdown field. Since a system of charged conductors cannot

remain in stable mechanical equilibrium, supports are required to keep the

spheres concentric. Because of the high potential difference between the

inner and outer spheres, the forces exerted by the supports against even a

small displacement (less than one percent) must be very large. This ignores

kinds of instability other than the spheres becoming off-center; for instance

buckling would almost certainly occur in both spherical shells. Lastly, there

are the openings in the spheres for access to the passenger compartments,

and external equipment such as radio antennas with sharp corners, all of

which would provide convenient places for the initiation of electrical break-

down.

More complicated electrostatic devices have been considered by Dow. 78

These have the disadvantage that they will work only for beams of particles

incident from one or two directions, but may prove useful in the rare cases of
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unidirectional fluxes. The flux of both Van Allen and solar flare particles

after the first few minutes of the flare are omnidirectional. This is caused

by the spiralling of charged particles in the geomagnetic field and interaction

with turbulent interplanetary magnetic fields. The designs of Dow moreover

require additional study with respect to electrostatic breakdown.

Magnetic fields may also be used to deflect charged particles away from

certain regions and thus provide shielding. The action of a magnetic field on

charged particles differs from that of an electrostatic field in several ways.

The energy of a charged particle is not changed by the magnetic field, except

for trivial amounts lost by radiation. The magnetic force on a charge does

not lie in the direction of the field, and it depends on the particle velocity.

The quantitative features of the particle's motion do not depend on the sign

of the charge, the only difference being that a trajectory for a negative particle

is the mirror image of some other trajectory for a positive particle. Thus

magnetic shielding can be used for particles of both charge. Since the energy

of particles not deflected from the protected area is not degraded, the RBE

would not be increased by using magnetic shielding.

Until recently it appeared that, although magnetic shielding was possible

in principle, it would not be possible in practice because high magnetic fields

spread out over unusually large volumes would be required. Magnetic fields

must be generated by electric currents, and even the use of very heavy con-

ductors carrying large currents in coil wound around ferromagnetic materials

would not result in fields sufficiently 'high for shielding against particles of a

few hundred Mev. Besides the heavy conductors and core material, large

amounts of electrical power and cooling water would be required. The weight

and power requirements would clearly put the magnetic system at a dis-

advantage with respect to passive shielding if ordinary conductors were to be

used. Also, the large amounts of conducting material and core material

would provide an ideal medium for the production of secondaries.

The discovery in 1961 of superconducting materials which maintain their

superconductivity in the presence of high magnetic fields has changed this

situation. Because superconductors have no electrical resistance, currents

can be kept flowing without the expenditure of electrical power provided that

the coils are kept at the (very low) liquid helium temperature. The weight of

4



a superconducting coil giving the same field would be much less than that of

a corresponding copper or silver coil. Because of the high currents, strong

magnetic fields can be achieved without the use of iron or other ferromagnetic

core material. Since ferromagnetic materials saturate at a field of about

20, 000 gauss, the use of these materials is not even an advantage for fields

of the order of 100, 000 gauss. Secondaries are not a problem in magnetic

shielding, since no core materials are required and the bulk of the super-

conducting material is relatively small.

Magnetic shielding using superconductors would have certain disadvantages.

The coils producing the magnetic field must be kept at liquid helium tempera-

ture; thus some sort of cryogenic refrigerator or liquid helium dewar would

be required. The system would be somewhat vulnerable to electrical and

mechanical damage. Additional structure would have to be provided to protect

the system against damage through interaction with its own magnetic field.

Calculations show that this structure will comprise about ninety percent of

the mass. The high magnetic fields involved will certainly have some effect

on instrumentation, and electrical apparatus aboard a space vehicle using

magnetic shielding would have to be designed with the magnetic field in mind.

It is felt that evidence of severe d-c magnetic effects on living beings is not

well-founded at present, and that exposure of a spacecraft crew to a strong

magnetic field constant in time need not be a disadvantage. Nevertheless,

such a threat must be considered extant until proved otherwise.

rhis report begins with a description of the charged particle radiation

environr. ",nt in space. The characteristics of the three principal forms of

space radiation (primary extrasolar cosmic rays, solar flare particles, and

geomagnetically trapped (Van Allen) particles) are given, with emphasis on

energy range, intensity, and dosage to unshielded man. The proposed

electrostatic shield is analyzed, and reasons are given and supported quanti-

tatively for concluding that the electrostatic system is not practical. The

major part of the report is devoted to a discussion of magnetic shielding

using dipole-like magnetic fields produced by cylindrical air-core (or vacuum

core) solenoids. It is shown that, provided the problems of fabricating

superconductors into wire coils can be solved, the magnetic shield of the type

described can offer a weight-saving advantage over passive shields giving

5



protection from equally energetic particles over equal volumes.

Studies of magnetic shielding have been carried out and reported by

Dow, 78 Levy, 77 Brown, 79 and members of our group. 74,80 It was shown by

Dow that if ordinary conductors are used for the shielding coils, the system

would weigh more than a passivc shield giving the same protection. Levy

considered a magnetic field produced by a single turn of superconducting wire

carrying a high current, and showed that this system would have less weight

than a corresponding passive shield if protection against high energy particles

(,v I Bev), which one would encounter on long missions, is desired. Levy

and Brown have pointed out that the prospects of magnetic shielding may be

expected to improve with the development of superconducting materials

having higher critical fields, critical current densities, and strength-to-weight

ratios, whereas there is little room for improvement of passive systems.

Both Dow and Brown have considered magnetic shields in which the deflection

of particles occurs within the magnetic structure, while Levy and our group

have considered systems in which the deflection takes place outside the magnet.

The systems considered in this report are of the latter kind.

It is felt that the uncontained field designs are better than the contained

field devices because of less problems with secondaries and more efficient

utilization of the magnetic energy over larger regions of space. But it is

probably too early to attempt to make a selection of one magnetic shield over

the others at this time, and we will be concerned here with establishing the

feasibility of such a system rather. than giving a detailed design.



2. CHARACTERISTICS OF CHARGED PARTICLE

RADIATION IN SPACE

Primary Cosmic Ray Particles

For at least a generation the existence of primary cosmic rays has

been known, and studies of their characteristics have been made not only

from the standpoint of regarding them as a natural beam of high-energy

particles, but also toward understanding their place of origin and the mecha-

nism for their acceleration. These studies were very difficult in the past

because very few cosmic ray particles are observed near the surface of the

earth. Indeed, for a long time it was not known that the various secondary

particles found near the earth's surface are products of the interaction of

primary cosmic ray particles with components of the atmosphere. In the last

decade cosmic-ray research has. advanced greatly because high-altitude

balloons, rockets, and satellites have been available for use in the upper

atmosphere and beyond.

The peculiar characteristics, of which perhaps the most important is

the very high energy, of cosmic rays have given rise to a number of theories

concerning their origin. Some of these theories postulated that the cosmic

rays are remnants of the original state of the universe before the stars were

formed, or proceed from some unknown nuclear events of spontaneous decay.

The central idea of these theories was that the problem of cosmic-ray origin

is part of a larger cosmological problem concerning the origin and evolution

of the. universe as a whole, rather than explainable. in terms of specific

mechanisms. Recent developments which provide a key toward establishing

such model theories include

1. The beam of primary cosmic ray particles is, to first approximation,

a sample of the nuclei of elements found in tha stars proportional to their

natural abundances. These nuclei have energy in the Bev range. However,

electrons and gamma rays having these energies are virtually nonexistent in

the cosmic ray beam. The energies which the heavier nuclei possess are

thousands of times greater than that which can be acquired by the disintegration

of atomic nuclei. This seems to imply that the particles acquired their

energy by some adiabatic process, proceeding over a long time, rather than,
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by some suddenly occurring event. Since particles which dissociate when

they interact with electromagnetic fields are nearly absent, it seems reasonable

to conclude that electromagnetic processes have been active in controlling

the history of the particles.

2. Magnetic fields in the solar atmosphere and in interplanetary space

have been found to be very important with respect to time variation of the

cosmic ray flux. As a matter of fact one of the best ways of getting informa-

tion about these magnetic fields is through study of cosmic rays, because the

fields are too weak to be investigated by more- conventional means such as

the Zeeman effect.

3, It has been found that many astrophysical phenomena, such as radio

emission and the polarization of starlight which has passed through the region

of our galaxy, arise through the interaction of electromagnetic fields with

the ionized interstellar medium.

4. The presence of large numbers of relativistic particles of high

energy in such objects as the Crab nebula has been confirmed by both optical

and radio astronomy.

Based on information such as the above, it may be seen that cosmic
ray primaries form an important tool for gaining information about the

structure of the universe in the large. Present models for the origin of

cosmic rays are still sketchy for want of observational information. This

condition is accentuated by our poor understanding of nonlinear hydromagnetic

processes and our lack of knowledge about the interstellar and intergalactic

media and the neighborhoods of supernovae or other energetic objects. But

in spite of these gaps in our knowledge, probably an understanding of the

origin of cosmic rays can be gained without postulating any new or rare

physical processes.

One of the most recent model theories of the origin of cosmic rays is
30

that of Morrison. In this theory there is a wide variety of sources, each

contributing to the cosmic ray flux. For cosmic rays of low energy especially,

a large number of mechanisms in stellar atmospheres or based on inter-

stellar gas motion could give rise to the observed intensities. The particles

whose energies are several Mev probably have their origins in streams of
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gas from the sun or other stars. Particles having energies in the 10 to

100 Bev range probably originate in stars with mass ejection and in magnetic

instabilities located in spiral arms of the galaxy. Particles with energies

in the 103 to 105 Bev range may originate in explosive stars, such as novae

and supernovae. These stars may now be extinct, since the particles can be

trapped in the galactic magnetic field long enough to go back to early stages

of the galaxy. Finally, particles in the very high energy range from 107 to

10 Bev may have come from unusual very energetic extragalactic objects,

such as the "jet" in the spherical galaxy NGC 4486.

We turn to a description of the properties of the cosmic radiation,

including the energy distributions (References 6, 7, 30). As indicated pre-

viously one of the most important features of primary cosmic-ray particles

is their high energy, which extends to at least a'few times 108 Bev or 1017 ev.

It is interesting to note that a single particle of energy 10 1 7 eV has an energy

of about 1.6 x 105 ergs or 1.6 x 10 - 2 joules in macroscopic units.

It is a general property of the cosmic ray beam that, apart from minor

fluctuations of a few percent, the flux of primary particles above the 10 Bev

remains constant in time except during -very large solar flares. Since the

earth turns on its axis and cosmic particles undergo complex motions in the

geomagnetic field, the observed constancy of the flux with time implies the

uniformity of the flux over all directions of space. Particles of the lowest

energies (below 2 or 3 Bev) do not follow this rule. Such particles are rare

in years of strong solar activity and are present in their full intensity only

near minimum of the eleven year sunspot cycle. It may be concluded that

cosmic ray particles of such low energy originate in the sun and derive their

energy from solar activity.

The flux of cosmic ray particles seems to remain essentially constant

for periods of the order of ten thousand years. This is shown by agreement

between documentary and radiocarbon dating of old historical events, for

which a correction taking into account background cosmic radiation must be

made. Considerations such as these give information about particles of

2 to 10 Bev energy only, but the bulk of the incoming energy lies in this range.

Measurements performed on cosmic-ray-produced isotopes in meteors show

that, within an order of magnitude, the flux of cosmic ray particles having

9



these typical energies has not changed for several hundred million years.

One may thus accept, as a fundamental feature of cosmic ray phenomena,

the statement that the portion of the cosmic ray flux not influenced by the

sun or the earth has remained essentially constant over times comparable

with geological ages. For energies below about 30 Bev the geomagnetic and

solar effects increase with decreasing energy, and below a few Bev the phase

of solar activity determines the observed filux.

The isotropy of the flux for particle energies above those attributable

to solar activity is important. It implies that there are no strong local

sources of cosmic radiation except for the sun. Now it is unlikely that the

true sources of cosmic rays are isotropically situated about the earth, so

we conclude that the trajectories of primary particles are influenced in such

a way as to obscure the direction of their sources.

The primary cosmic ray particles are mostly protons, but there are

also alpha particles and heavy nuclei up the periodic table at least as high

as iron. The number of electrons and gamma ray photons is below one

percent of the total. The abundances of various nuclei in the cosmic ray

beam are compared with the solar system abundances of the same elements

in Table 2. 1.

The overall similarity between the abundance of nuclei in the cosmic

ray beam and the abundance of elements in the solar system (including the

sun) is striking. Perhaps the cosmic ray beam is richer than the sun in the

heavier elements, but only by a factor less than an order of magnitude.

From studies of the structure and composition of stars we know that astro-

nomical abundances are not universal but vary from object to object, depending

on what thermonuclear processes are going on in a particular star. The

cosmic-ray beam may provide us in the future with clues to its origin after

both its composition and the composition of possible sources are known with

greater precision.

Another striking property of the cosmic ray particles is their energy

spectra. Using a number of different experimental methods, the primary

particles have been shown to extend in kinetic energy from less than a tenth

of their rest energy to as much as 109 times their-rest energy. The total

10



Table 2. 1. Nuclear abundances, based upon an abundance of 100 for
hydrogen or hydrogen nuclei (after Reference 30).

Cosmic ray beam Adjusted solar system
(mainly below composition ("cosmic"
10 Bev) abundances)

H 100 100

He 15 15

Li 4 x 10- 
7

Be 0 to 0.4 1 x 10-7

B I x 10-7

C 0.037

N 1.2 + 0.4 0.016

0 0.10
F

Ne 0.2 0.003

Mg 0.09 0.003

Si 0.07 0.004

Fe, Co, Ni 0.06 6 x 10 4

up to 0. 004
Beyond Ni less than 10 5  I06

energy (kinetic energy plus rest mass energy) of a relativistic particle is

given by

E,.
E-- m "0 - vile),I

where m 0 is the rest mass of the particle, m is its "relativistic mass", v is

the speed of the particle, and c is the speed of light. If the speed of the

particle is small compared with the speed of light, then the right hand side

of Eq. (2. 1) may be expanded in a Taylor series; retaining only the leading

terms, we get

; -_12.2)

2
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2.
This expression, except for the rest energy term m 0 c , is a nonrelativistic

expression for the kinetic energy of a particle. Thus the kinetic energy of a
2

relativistic particle is the quantity E-m0c .

The kinetic energy in units of rest mass energy is plotted as a function

of velocity in Fig. 2. 1 -according to both relativistic and nonrelativistic theory.

In the relativistic case at velocities near the velocity of light, the increase in

energy is due to increase in mass rather than increase in velocity. For

velocities of the order of 0. 75 c, corresponding to a relativistic kinetic energy
2of about half the rest energy m 0 c , and above, the nonrelativistic theory is to

be regarded as inadequate. The rest energies of electrons and protons are

Si kiev er .thrtis,

41Mev %w.e rrQ+OVs. (2.3)

The differential directional intensity, or flux per unit energy, of a stream

of particles is defined in the following way. Consider a surface in space, and

upon this surface consider a differential area dA and a normal to dA. Further,

consider a cone subtended an infinitesimal solid angle df.. centered about the

normal to dA. Then n, the differential directional intensity, is the number of

particles dN crossing the unit area dA which have energy in the interval E

to E + dE, the direction of whose velocity vectors fall in the solid angle d.4,

per unit time dt, i. e.,

AN
_ •AA At (2.4)

A typical unit for n might be protons/Mev cm sec steradian.

It is a consequence of Liouville's theorem of statistical mechanics that

the directional intensity of a beam of charged particles moving in a constant

magnetic field is constant along the path of the particles (Reference 6,

pp. 267-269). Applications of this result to motion in the geomagnetic field
61-65

have been made by Lemaitre and Vallarta.
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Fig. 2. 1 Kinetic Energy as a Function of Velocity for Relativistic
and Nonrelativistic Particles.
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The intensity will in general be a function of energy: n = n(E). The flux

of particles is obtained by integrating the differential directional intensity

over all values of the energy.

so

N(>E)= in"(6) A E. (2.5)

This gives the number of particles per unit area per second with total energies

greater than E.

The integral energy spectrum of the cosmic ray protons is well repre-

sented by the empirical formula 3 0

N(>E)= 0-3 E-1/ (590 Mev<E<20 Bev), (2.6)

where N(>E) is measured in protons/cm 2 sec steradian and E must be given

in Mev. The spectrum extends up to extreme energies of at least 10 18 ev.

The low energy limit is less than 100 Mev. The energy flux falling on the

surface of the earth from a solid angle of 21K steradians near the poles, where

it is unaffected by geomagnetic shielding, is about 7 x J0 3 ergs/cm 2 sec.

The exponent in the denominator of the formula (2. 6) for the spectrum is not

strictly a constant 3/2 but varies somewhat both with energy and with time.

At sunspot maximum it goes down to 1. 2 + 0. 1.

Though the sources of cosmic radiation are apparently outside our

planetary system, it has become clear that conditions inside the system do

affect the amount of this radiation reaching the space around the earth. Such

effects as have been observed so far are decreases in the cosmic radiation.

"Forbush decreases" are very sudden decreases which follow strong solar

disturbances and which last several days or weeks. Presumably the plasma

thrown out d1.ring the flare carries a magnetic field with it which deflects the

cosmic ray particles. Another type of decrease is correlated with the eleven

year solar cycle. In 1959 the intensity during the solar maximum was about

half that during the solar minimum around 1954.
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The cosmic ray beam is strongly shielded by the dipole magnetic field
of the earth. The full cosmic ray intensity comes into the earth in the regions

near the poles. But near the equator the less energetic cosmic rays are bent

away from the earth so that only those having energies greater than about

15 Bev can come in. Hence the intensity near the equator is only about five

percent of that in the polar regions. Beyond the geomagnetic field the cosmic

radiation is presumed to be isotropic. The geomagnetic field creates an

east-west effect near the earth with a predominance of the particles 'coming

from the west.

The radiation dosage due to cosmic rays which might be encountered

during a manned space flight without shielding has been estimated to be about

5 to 12 rem per year and is not-regarded as hazardous. 3 1 3 2

Particles From Solar Flares

Sunspots and solar activity are important to space flight because of their

relationship to solar flares. The mechanism for formation of sunspots is not

well understood. It is believed that they are formed when solar gases flow

into low-pressure areas, similarly to hurricanes on earth. Because of the

high magnetic Reynold's number on the surface of the sun, sunspot regions

have high magnetic fields generated by magnetohydrodynamic effects. The

expansion of gases in the low pressure region results in cooling with resultant

lower light emission which appears as a darkening. The dark central region

of a sunspot is called the umbra. Surrounding the umbra is a filamentary

lighter region called the penumbra.

Several days before the formation of a sunspot, a series of bright patches

called faculae appear on the sun's surface. In a very short time (sometimes

as small as a few hours), a hole forms in the facular area A.nd a sunspot is

born. The faculae continue to exist throughout the lifetime of the sunspot

group and may persist for several weeks after the dark areas disappear.

Usually sunspots occur in pairs or groups elongated in the direction of

the sun's rotation; occasionally they may occur singly. It is believed that

sometimes one member of a sunspot pair is submerged below the solar surface,

and is not -visible except through its influence on the faculae. Sunspots occurring

in pairs have opposite magnetic polarity. Moreover, if the preceding spots in
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pairs in the sun's northern hemisphere have positive magnetic polarity, the

preceding spots in the southern hemisphere have negative polarity. The

polarities of long-lived spots appear to reverse with each 11-year sunspot

cycle; thus the true cycle may be a double one having a period of 22 years.

The largest sunspots measure 20, 000 miles or more across the penumbral

region, a large double group may extend 100, 000 miles across the penumbra,

and complex multiple groups may be even larger. A spot with diameter larger

than about 20, 000 miles may be seen by the naked eye if proper filters are used.

In regions of the sun where sunspots exist, solar flares may occur. A

solar flare is a brightening of the facular area surrounding a sunspot. Peak

brightness of the flare is reached within a few minutes; decay occurs over a

period of a half hour to several hours. Flares are classified according to size

as Class 1, 2, 3, or 3+. The numbers indicate the area-in 10, 000ths of the

solar disk-of the increased brightness of the flare. Class 1 flares, the

smallest, have a mean life of about 15 minutes. They occur every few hours

during ?eriods of maximum solar activity. The largest flares, Class 3+, have

a mean life of about three hours, but occur only two or three times per year.

Some extremely large Class 3+ flares have lasted longer than five hours.

Solar flares produce a number of effects in the neighborhood of the earth.

Sudden Ionospheric Disturbances (SID's) are radio fadeouts which occur on the

bright side of the earth practically simultaneously with the brightening of the

flare. They are caused by an abrupt increase in the ionization of the ionospheric

D-layer due to ultraviolet radiation from the sun during the flare. Although

not all flares produce SID's, some fadeouts can last for several hours.

During some, but not all, solar flares the sun may emit a considerable

amount of matter. Some of this consists of protons which have moderate

energie's (ten to several hundred Mev) and sometimes relativistic energies

(several Bev or more). In addition a plasma consisting of low energy protons

and electrons is emitted from the solar flare. The protons give rise to the

increases in ionization above the normal ionization produced by galactic cosmic

rays. These increases are observed in detectors in rockets, balloons and

sometimes at sea level. The plasma emitted by solar flares may be the cause

of violent fluctuations in the earth's magnetic field (geomagnetic storm).
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The protons, upon entering the geomagnetic field, are subject to the

force P = (e/c)OX I, which causes them to follow trajectories depending on

the vector values of v and . Analysis of this effect shows that it requires

more energy for a proton to enter at the equator than at the poles. Associated

with each geomagnetic latitude is a cutoff energy. Protons with energies below

this cutoff cannot enter but are bent into trajectories that send them away from

the earth.

The history of solar proton emissions varies with latitude due to the

effect of the geomagnetic field. Within about twenty degrees of the geomagnetic

poles, the magnetic effects are mostly negligible, and so the observations in

these polar regions reflect the history of the solar proton emissions rather

than the history of geomagnetic storms. The rise-time of proton storms varies

from several hours (12 hours in the event of September 3, 1960) down to fraction

of an hour (1/4 hour in the event of May 4, 1960). About one hour is a typical

rise-time. The decay time varies from several days (4 days in the event of

July 10, 1959) to several hours (3 hours in the event of May 4, 1960) with a

typical value of about a day. Except for small times, the decay generally goes

proportionally to t - there t is the time after maximum intensity. For large

flares the decay may be slower (e.g. , proportional to t - 1 . 5), and for small

flares it may be faster.

The latitude dependence of solar protons is determined by the geomagnetic

field which at the time of these events may be subject to severe fluctuations.

There have been occasions (e. g. , May 12, 1959) when balloon-borne detectors

at Minneapolis and Murmansk, Alaska have observed the solar protons at

energies 100 to 400 Mev. These energies are below the energies permitted

by the normal geomagnetic field at those latitudes. The greatest solar proton

intensity always occurs near the geomagnetic poles.

At the beginning of a solar proton event, the angular distribution of

protons at the top of the atmosphere is anisotropic. Directions determined

by permissible orbits through the magnetic field connecting the solar point of

emission with the point of observation are favored. But by the time the maximum

intensity is reached the angular distribution seems to become isotropic. This

is probably due to large random distortions of the magnetic field near the sun,

near the earth, and beyond the earth. The angular dependence of protons at
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any depth inside the atmosphere is determined by atmospheric absorption,

which is high at large zenith angles.

The intensity and spectral distribution vary widely from one solar proton

event to another. The energy distribution can usually be approximated by an

integral spectrum of the form

N (>F)= k (F E " 271

where N( > E) is the number of protons having energies greater than E.

Table 2. 2 shows the variation in energy distribution and shows that there are

marked changes in this distribution during the course of a single event. In

this table E 0 is taken for convenience to be 100 Mev.

It has been estimated that for a typical solar flare (k from 10 to 100

protons/cm sec ster, n from 3 to 5), the exposure level at maximum intensity

may be from 10 to 100 rem/hr and the total integrated dose may be from
31-32

20 to 400 rem.

The solar protons are usually produced during solar flares of Class 2

or greater. These flares occur at random in active sunspot regions. Usually

the active sunspot region does not emit solar protons on its first pass across

the visible side of the sun. Hence a requirement for a proton event seems to

be the presence of active sunspot regions on the visible side of the sun which

were in existence on prior passes across the visible side. If large flares

occur in this active sunspot region, solar protons may be emitted and may

reach the vicinity of the earth. But the likelihood of any reaching the vicinity

of the earth is not great while the active region is just appearing on the east

limb of the sun. It is greater several days later, when the region approaches

the central regions of the sun's face and remains high as the region passes

through the western side and around the west limb. Thus it may be possible

to have several days advance notice of a period during which a solar proton

event is likely.

Anderson 9 made a study of the relation of the probability of solar proton

emission to the size of the penumbral region of an active sinspot group.
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Table 2. 2. Solar proton events

Universal Time n k 2 Energy of Observation
(protons/cm Particles Point

sec ster) Observed

I (Mev)

0430 4 80 100-500 Balloon; Fort
August 23, 1958 Churchill, Canada

0200-1500 3.8 400 100-220 Balloon emulsions;
May 12, 1959 Minneapolis

2300-0830 3. 5 17 100-400 Balloon; College,
July 14-1'5, 1959 Alaska

0500 5. 5 45 200 Balloon;
July 15,, 1959 Minneapolis

1046 2. 9 1500 88-300 Balloon;
July 15, 1959 Minneapolis

1700 2.6 - 400 Balloon; Lindau,
July 15, 1959 Germany

After flare of 2115 4 1500/t
3  85-300 Balloon; Resolute

July 16, 1959 t>l.2 days Bay, Canada

1000 2.6 0.4 30 Satellite;
April '1, 1960 Explorer 7

0900-1200 2.4 0.5 90-500 Balloon;
April 1, 1960 Minneapolis

0400 0. 12 - 100,Z50 Balloons;
September 3, 1960 Minneapolis and

Fort Churchill,
Canada

1006 3, 5 100-250 Balloons;
September 3, 1960 Minneapolis and

Fort Churchill,
Canada

19



He found that solar proton emission occurs predominately when the penumbral

area is greater than a certain minimum. Only two out of 40 solar proton events

violated his criteria (i. e. , occurred during a time not included in the interval

whose beginning time is when the penumbral area of a sunspot group begins to

exceed that of the group of July, 1958 measured two days before the large

flare of July 7, and 'whose ending time is when the sunspot group goes behind

the west limb), whereas 13 out of the 40 would have been expected to violate

it had the events been completely random. On the other hand, there were many

periods during which the criteria were satisfied (times included in these intervals)

but during which no solar proton events occurred.

Robey 16 has made a study of two giant solar flares and the hazards'to

which space travelers would be subject during such flares. A large Class 3+

solar flare would be dangerous to man in space at least as far out as the nearer

major planets. The Class 3+ flare of May 10, 1959 was studied, and the flux

densities, dosage rates for unshielded -nan, and passive shielding require-

ments were estimated. Also considered were the very high energy cosmic ray

flares, which are in a different class, tentatively denoted by Class 4, from the

Class 3+ flares. The flare of February 23, 1956 was in this class and was the

largest flare ever recorded. Flares in this class are rare, averaging about

one every three or four years. However, the prediction of flares of Class 3+

and above is very poor.

It was estimated by Robey that a flux of 3 x 104 protons/cm 2 sec ster

existed at one earth-distance from the sun for several hours following the flare

of May"10, 1959. This gives an equivalent dose rate for unshielded man of

280 rem/hour, assuming an RBE of 2. The cosmic noise absorption, which

is taken to indicate the arrival of particles, was observed 29. 5 hours before

balloon measurements were made. At the time of measurement the flux was

decaying with time. Thus one is being optimistic in assuming that the dose

rate was constant during the 29, 5 hour period at 140 rep/hour. Under this

assumption the total dose from the flare is 4, 374 rep. The RBE is somewhere

between the limits 2 and 10, which implies an effective biological dose between

8, 544 and 43, 740 rem. This is lethal in either case.

There are only five cases of extremely high energy solar flares (Class 4)

on record of which the flare of February 23, 1956 is thought to be the largest.
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Because of the large flux of particles in the Bev energy range, this flare

represents one of the worst cases from the standpoint of radiation shielding.

On the basis of an estimated 1013 grams ejected by the sun over a solid angle

of one steradian, the radiation dose to an unshielded man at the earth's distance

from the sun was estimated to be 103 or 104 rem/ster. This has to be multiplied

by 41T (giving another order of magnitude), because the flux would be omni-

directional because of interactions with turbulent magnetic fields in inter-

planetary space. The weight of a spherical shield made of carbon with an

inside radius of 90 cm and a wall thickness sufficient to reduce the proton dose

to 25 rem was estimated to be 834, 000 pounds, assuming an RBE of unity.

Actually the RBE would be higher than this because many of the protons which

would pass through the shield into the cavity would have their energies degraded

to low values where the RBE approaches 10 or 20. With an RBE of ten assumed

for a safety factor, the shield weight is increased to several million pounds.

Without the safety factor the ,'all thickness is about 260 cm (8. 5 feet). The

additional dosage from secondary neutrons and mesons was not estimated;

an inside lining of a good neutron monitor would also be required.

It may be concluded tentatively that for missions in space lasting for

two or three years, during which time the probability of a giant solar flare is

high, shields against protons in the Bev energy range would be required.

Van Allen Particles

The Van Allen "radiation" consists of charged particles trapped in the

earth's magnetic field or "magnetosphere". The particles are concentrated

in a toroidal region centered over the geomagnetic equator. Usually this is

divided into the so-called "inner zone" and "outer zone" based on regions of

maximum particle intensity. The inner zone remains constant in position and

intensity; the outer zone varies in position and intensity depending on solar

activity.

The inner part of the Van Allen belt contains predominately large numbers

of protons of ene.rgy greater than 10 Mev although electrons are also found.

For energies greater than 75 Mev the integral proton energy spectrum follows

approximately an E -n law with a equal to 0. 84. Between 10 Mev and 20 Mev,

n changes to about 3. 5. The total number of protons having energies greater
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than 40 Mev at the heart of the inner zone (2200 miles above the geomagnetic

equator) is about 2 x 104 protons/cm 2 sec or about 20 rem/hr. Also the inner

belt contains electrons of low energy. These electrons are much more numerous

than the protons but of such low energy that they contribute little to the ionization.

They are difficult to detect, and in most of the preliminary experiments the

information about them has been deduced from the secondary bremsstrahlung

x-rays they produce. In the heart of the inner zone, the intensity of electrons

of energy greater than 20 Key is about 2 x 109 electrons/cm sec steradian

(accuracy within a factor of 10) and the intensity of electrons of energy greater

than 600 Key is about 107 electrons/cm sec steradian. The integral spectrum

for electrons of energy greater than 200 Key follows an E - n law with n about

4 or 5. A summary of the integral energy spectra for Van Allen particles is

given in Table 2. 3.

Table 2. 3 Flux (integral energy spectrum) of particles in the Van Allen

zones (after Reference 29).

Peak of the Inner Zone (usual situation)

Electrons: N e(>30 Ke) = 2 x 109 electrons/cm sec ster

N e(600 Key) - 1 x 10 electrons/cm sec ster

Protons: Np(>40 Mev) 2 x 104 protons/cm sec

Peak of the Outer Zone (situation of high intensity)

Electrons: Ne( >30 Kev) =1 x 1011 electrons/cm2 sec

Ne( >200 Kev)j 1 x 108 electrons/cm sec

Protons: Np(> 60 Mev) et 1 x 10 protons/cm 2 sec

For protons of energy less than 30 Mev, no significant information

is available.

Dose rate in peak of the inner zone = 24 rem/hour.

Dose rate in peak of the outer zone = 200 rem/hour.

The outer part of the Van Allen, belt contains primarily low-energy

electrons. It may be divided into two subzones which have been designated 4 1

E 2 and E 3 . The inner E 2 subzone has maximum intensity at about 6000-7000

miles above the geomagnetic equator and the outer E 3 subzone at about 9000

to 12, 000 miles above the geomagnetic equator. The intensity and position of
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the E 3 subzone varies depending on solar activity whereas the E subzone is

relatively stable. The E 3 subzone is the more intense zone with 1010 or

10 11electrons/cm sec with energies greater than 20 Key. Naugle estimates

200 rem/hour for typical exposure in the heart of the outer Zone.

Understanding the Van Allen radiation belts will involve the solution of

several physical problems. There are questions concerning the source or

sources of the radiation and the mechanism by which it is injected into the

geomagnetic field. There is the problem of finding the trajectories followed

by the particles of trapped radiation. And there are questions concerning the

lifetime of the trapped radiation, energy-loss scattering, and other mechanisms

by which particles are removed from the radiation belts. Let us discuss these

questions briefly. Two possible sources for the Van Allen radiation have

received the most consideration: the decay of neutrons from the cosmic! ray

albedo of the earth's atmosphere, and the radiation from solar storms.

Measurements of neutrons in the region of the radiation belts have been
17

made by Hess and Starnes using a boron trifluoride detector up to 1400 km

altitude. Since such a detector is predominantly sensitive to neutrons of energy

much lower than those whose decay is supposed to give rise to the measured

Van Allen belt protons, these data do not readily yield the necessary source

information for the proton radiation, although they do for the electron radiation.

Neutron spectrum measurements in the energy range appropriate to gain source

information for the Van Allen belt protons have been carried out by Hess and

others in airplanes to 40, 000 ft elevation. These results must be extrapolated

to Van Allen belt elevations in order to be applicable. However, the neutron

albedo source in the energy regions appropriate to the Van Allen electron

radiation is more reliably known since the atmospheric measurements coupled

with diffusion calculations are confirmed by outer-space measurements. On

the basis of presently available information it has been concluded that neither

the outer belt electron radiation nor the inner belt electron radiation is accounted

for solely by injection of neutron decay electrons. The protons radiation may

be accounted for by injection of neutron decay protons insofar as order of

magnitude is concerned, but there is some lack of agreement in the shape of

the spectrum.
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Protons from solar flares may be the source of a part of the Van Allen

proton radiation, although the fact that there are only small changes in the

proton radiation level during a solar proton event tends to weaken this

hypothesis. The radiation from solar flares is favored as a source for the

Van Allen electron radiation because of the changes in intensity and position

of the outer belt during solar emission. But this hypothesis is not consistent

with the fact that no energetic electrons have been detected in the solar radiation.

Also no adequate mechanism to provide acceleration of electrons to observed

energies during these events is presently known.

Although the motion of particles trapped in a magnetic field is well

understood, the application of these principles to charged particles in the earth's

magnetic field becomes complicated mathematically. Computations of low-

momentum trajectories are much simplified by adiabatic invariants. Calculated

changes in intensity and angular distribution of the trapped radiation as functions

of position in the geomagnetic field are consistent with such measurements as

have been made. However, the trajectories of high momentum particles for

which the Alfven discriminant is of order of 0. 1 or greater are not well under-

stood because the method of adiabatic invariants fails in this case.

The time that a particle can remain trapped in the geomagnetic field

depends on many considerations such as energy loss by collision with ions and

neutral atoms, charge exchange, and nuclear interactions. Cross sections or

the probability of occurrence for these processes are well known. The lifetimes

can be calculated to the accuracy with which the composition of residual matter

in these regions of space is known. Fluctuations such as hydromagnetic waves

and magnetic storms in the magnetic fields will affect the lifetimes. Dust

particles in space may also have some effect on the lifetimes of the particles.

Effects of Short-Time Exposures of Man to the Radiations in Space

It is of considerable interest to make an estimate of the radiation exposure

which an individual might receive during space travel. Information currently

available on the radiation levels in space make it clear that this problem is

one which might best be described as "of major importance" in the planning of

such travel.
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Initial work in the field of radiation dosimetry led to the establishment

and use of the roentgen as a basic unit of radiation dose. The roentgen is

defined as that amount of radiation which produces in one cubic centimeter of

air one electrostatic unit of charge of either sign. This is about 83 ergs/gram

ui air. This unit, while useful, presents certain difficuities which are removed

in part by a unit called the rep. A rep, or "roentgen equivalent physical", is

the amount of energy per gram of tissue which results from exposure to a

radiation field of I roentgen. Measurements indicate that the rep is equal to

93 ergs/gram. Another unit which has become popular is the rad, which is

simply 100 ergs/gram. These latter units have an advantage over the roentgen

in that they characterize the radiation dose in terms of the energy deposited

in tissue rather than merely describing an effect due to the passage of the

radiation through air. The damage to tissue for a given amount of energy per

gram is dependent upon the type of radiation and the energy of the primary

radiation. In other words, the various radiations differ in their relative

biological effectiveness (RBE). The rem, "roentgen equivalent man," equal

to the product of rads times RBE is the most meaningful unit because it is in

terms of the effects of radiation on human beings.

With this brief introduction to dosimetry, we turn now to the problem

of determining how much radiation is too much. Like many'problems in life

sciences, a single definite answer is not available. There is'nearly universal

agreement that radiation is harmful. At high intensity, death or other effects

occur with fairly definite probability and usually somewhat delayed in time.

At low levels the exact effects are now known, although most experts are of

the opinion that all radiation is harmful to some degree and might be manifested

as a slightly shortened lifespan or other effect difficult to recognize.

The gross acute effects of radiation are also time-dependent. This is

a consequence of the ability of the body to rebuild and repair. This could be

of considerable importance for relatively long exposures such as might occur

during prolonged space travel. A consideration of the time dependency of the

effects of long exposures should precede extended space travel. However, we

shall limit our considerations to the more immediate problem of shorter term

exposures since shorter ventures into space are certain to preceed longer

missions. We must note, however, that even distributing the radiation exposure

over a period of several days will somewhat reduce the observable effects.
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As a more conservative estimate will result from neglecting this effect, it

will not be taken into consideration at this time.

While there is not any amount of radiation which can be called completely

safe, there are maximum permissible radiation exposures established by law.

These standards allow routine exposures up to roughly 3 rem per calendar

quarter provided that the total accumulated exposure does not exceed an average

of 5 rem per year after age 18. The regulations also permit a single exposure

of 25 rem "occurring only once in the lifetime of the person". It is clear that

the scope of such recommendations and regulations was never intended to

include travel in extraterrestrial space. Still, a limit must be selected and

when one takes into consideration the other elements of risk which face the

space traveler, a limit which is not unduly conservative would seem to be in

order.

To aid in the selection of such a limit, a few of the effects of radiation

are reviewed in Table 2. 4 in order to help suggest a limit and to illustrate

the consequences of exceeding such a limit.

Table 2. 4 Effects of radiation doses

Dose (rem) Major Effects From Short Exposures

600 Essentially no survivors.

400 Many symptoms; only 50% would surviv
30 days with medical attention.

200 Few symptoms during the first two weeks;
many symptoms beginning in the third week;
perhaps 90% surviving 30 days with medical
attention; the 90% probably making a rather
complete recovery.

50 Transient changes in the blood cells.
Essentially 100% survival. Ill effects
at a later time not likely.

25 No effects observable.

It can be seen from Table 2. 4 that exposure to 25 rem would not be

cause for alarm if lower exposures are not attainable. One must also take

into consideration the possibility that additional shielding may increase the
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hazard by adding to weight gene-rally and possibly supplanting other features

or items of equipment. However, any limit ultimately selected must also be

influenced by the need for a safety factor which compensates for the uncertainty

in dosimetry in this new field.

The protons in the Van Allen region are relatively high in energy by the

usual standards. Van Allen2 9 has estimated that a traverse of the radiation

belts might result in a dose of the order of 10 roentgens. If one takes the data

of Schaefer 6 0 indicating approximately 120 rep/hr at the peak of the inner

radiation belt, and assumes travel through the belt at a velocity of 5 miles

per second taking into account the change in intensity with distance, a dose of

approximately 15 reps per traverse results. The above calculation assumes

the electron dose to be negligible with very slight shielding affordea by structural

materials. Schaefer has made a preliminary evalnation of the RBE of protons

in the Van Allen radiation belt and obtained a value of about 1. 2. He found the

RBE for solar flare protons to be about 1. 5. These factors are sufficiently

close to 1. 0 to be neglected for the present estimations in view of the 'fact that

RBE is also a function of the protonenergy.

From the foregoing it is obvious that the radiation levels would not allow

a manned craft to remain in the Van Allen radiation belt for any appreciable

time.

Another important asp ct of the radiatiun hazard in space is that preaented

by solar flares. Solar flares have been observed to produce dose rates on the

order of Z00-300 rep/hour and to persist for several hours. In the case of

only-minimal shielding of 2 gm/cm2 such as would be expected for structural

strength, the lethal consequences of being exposed to a solar flare is so

obvious as to require no further comment. While efforts to increase the pre-

dictability of solar flares are continuing, it would appear unlikely that prediction

will be satisfactory for the longer flights. Thus, shielding for solar flares

appears to be mandatory. It is noted that this is not necessarily the case for

the Van Allen belt since there are "polar cones" through which one might pass

and the ability to predict the radiation dose within reasonable limits makes the

hazard more acceptable. However, a departure over the polar caps could be

hazardous if a large solar flare were to occur, in fact more hazardous than a

departure through the Van Allen belt where the geomagnetic field offers some

protection. Although the earth's magnetic field acts as a barrier to solar
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flare particles in the lower latitudes, it will assist these particles to funnel

down over the geomagnetic poles by the magnetic mirror effect. Thus the

flux of solar flare protons would be high in the regions considered safe from

Van Allen particles.

In conclusion, the most profitable shielding effort will be against solar

flare protons. Besides being the source of the highest particle intensity, the

proton energy spectrum contains more of the lower energy protons which

have greater absorption coefficients. The RBE of these lower energy protons

is higher because of the greater linear energy transfer (LET). The solar

flare proton spectrum peaks at less than 50 Mev and decreases exponentially

at energies greater than about 100 Mev. Assuming a minimal structural
2

shielding of 2 grams/cm , and using data from the solar flare of May 1959,

one may determine graphically that about 80 percent of the protons have

energies 1, ss than about 50 Mev; about 92 percent less than 75 Mev, 96 percent

have energies less than 100 Mev; and 1 percent have energies in excess of

150 Mev.

As a preliminary estimate, it is necessary to shield against protons up

to 150 Mev in order to achieve a shielding factor of about 100. Of course, in

the interest of simplicity, we have passed over a number of problems which

deserve more attention. Among these are the radiation damage potential in

the lens of the eye, change in RBE as the proton ene:rgy penetrating the shield

changes, and possible radiation effects not adequately predicted by measure-

ments and calculations based only on ionization in tissue.
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3. ELECTROSTATIC SHIELDING

One of the methods proposed for shielding a space vehicle against high

energy charged particles is to use electrostatic fields. Such fields could be

set up around the spacecraft by giving the vehicle an electric charge. The

electric field would repel particles having the same charge polarity as the

vehicle, but would attract particles having the opposite charge. It is also

possible in principle to design electrostatic configurations which would shield

against charged particles of both signs. The simplest such design is the two

concentric spheres which will be discussed in the sequel.

Let us compare the advantages and disadvantages of the electrostatic

shield with those of the uncontained or dipole-like magnetic shield. A single

spherical charged conductor will attract all particles of opposite charge besides

repelling all particles of the same charge. The shielding effect will be

isotropic since the repulsion or attraction would not depend on the direction

from which the particles approach the sphere. On the other hand, the magnetic

shield is intrinsically effective against particles of both signs. Magnetic

shielding is anisotropic because the forbidden regions for particles of the same

energy depend on the direction from which particles approach and on their

impact parameters.

Although simple conceptually, electrostatic shielding is impractical,

primarily because of the high potentials required on the conducting surfaces.

Extremely large and relatively smooth surfaces would be required to prevent

electrical breakdown and charge leakage. Shielding against charged particles

of both signs would require two concentric spheres. Such a system of charged

conductors inherently unstable and, as will be shown later, the force

resulting from a small off-center displacement tending to increase that

displacement would have to be compensated by a structure adding considerably

to the mass of the system and to the electrical breakdown problems. Finally,

it is not clear how the high potentials required could be generated and main-

tained in interplanetary space, which is a relatively good electrical conductor.
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Fig. 3. 1 Geometry of an Electrostatic System Capable of

Shielding Against Both Positive and Negative Charged Particles.
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Operation of Two Concentric Charged Spheres

By using two concentric spheres charged to opposite polarities it is in

principle possible to shield against both positive and negative charged particles.

In this section we consider the way in which such a shield would operate and

establish the dimensions of the system based on vacuum breakdown considera-

tions. In the next section we study the stability of the system and calculate

the force tending to increase an off-center displacement. A drawing of the

system is shown in Fig. 3. 1. The region to be shielded is that within the

inner sphere.

Let a and b represent the radii of the inner and outer spheres, and let

qa Va and qb, Vb be the corresponding charges and potentials on the spheres.

The electrostatic potential V(r) at a distance r from the common center of the

two spheres is given by

bVb-V V (a S rb) (3. 1
b-0, b- r

FVb(b)

in terms of Va' Vb or by

V(O)= 
b

(3.2)

r b

r

in terms of the charges.

Equation (3. 2) is expressed in electrostatic units whereas Eq. (3. 1)
can be regarded as independent of the system of units. In what follows we
shall work in the esu system but some of our results will be stated in
engineering units. for the sake of familiarity.
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Fig. 3. 2 Electrostatic Potential and Field as a Function of
Radial Distance for Two Concentric Charged Spherical Conductors of
Negligible Thickness.
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The potentials are related to the charges by

b
(3.3)

V1, +~

or, conversely, by

-V,) 
(3.4)

A typical plot of the electrostatic potential (3. 1) as a function of radial

position is shown in the upper graph of Fig. 3. 2. The potential function is

continuous but contains two "corners", one at a and the other at b. An

approaching proton of charge e aimed directly at the center of the spheres

(zero angular momentum) with kinetic energy less than eVb encounters a

potential barrier and its turning point is outside the outer sphere (b rt).

An electron of charge -e and zero angular momentum with kinetic energy less

than -eVa also encounters a potential barrier, but its turning point is in the

space between the two spheres (a< rt < b). In the foregoing and in the figure

we have assumed that V a is positive. The essential double potential barrier

could also have been obtained by taking Va positive and Vb negative, but we

will show later that this situation is less advantageous from the standpoint

of breakdown in view of the fact that in the space environment the protons

are much more energetic than the electrons.

The electric field as a function of position is obtained by taking the

negative derivative of the potential with respect to r. In terms of potentials,
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the field is given by

E(,')= 0 (04 rd ),
V6~ ~ ( - . , r .4 6),

rs (3.5)

b (b*,-).

This function has discontinuities at a and b (Cf. Fig. 3. 2). Inside the smaller

sphere the field is zero Just outside the inner sphere it jumps to a value

Eao given by

EQ - vb--v . (3.6)

The field then falls continuously in absolute value until a point just inside the

larger sphere is reached; the field there is

Eb _ 1. - V . (3.7)
6 -a

Just outside tne outer sphere it jumps to the value

(3.8)

As a result of the electric forces, the inner sphere will experience a

pressure (independent of the sign of q- and the value of qb) tending to expand it.
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This pressure will be equal to

P. -- = _L - (3.9)
A ai 87V ( . 1-f

The outer sphere will experience a pressure or tension given by

_6. - _W (3. 10)

To avoid buckling instabilities in the outer sphere, it should be maintained

under pressure (Pb> 0) rather than tension (Pb<0); that is, we require

I 'EboI> l-bil . This leads directly to the condition that

b>'2_[y (3. 11)

Thus by the proper choice of b/a the outer sphere can be maintained subject

to a slight outward pressure.

Let us at this point compare the electric fields just outside each of the

two spheres:

Eg. E-0 
(3. 12)

Generally the protons in space are considerably more energetic than the

electrons. We have a choice between making (1) the inner sphere positive

IVa >0) tc repel the protons and the outer sphere negative (Vb< 0) to repe]

the electrons with IVal>> IVbI or (2) making the inner sphere negative

(V a 0) to repel the electrons and the outer sphere positive (Vb> 0 ) to repel
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the protons with IVal<.VbI In case (1) we have Va/V b 4..- 1 and in

case (2) we have V b/V 4 - 1.

Suppose first that Va/Vb ,", - 1. Then Eq. (3. 12) gives

' I (> -b'V) (3.13)
E b. Ck(b - d)

The right hand side of this expression has (for b > a) a minimum (equal to 8)

at b/a = 2 and increases nearly linearly with large b/a. Hence

I r=.O >> 8 I '.< - V6). (3.14

This condition is undesirable. Since the largest field 1EaoI in the system

must be less than the breakdown field Emax , the outside field 1Eboi must

be much less than Emax/8. This could only be achieved, for useful values

of Va-Vb , by making the outer sphere extremely large. But the inner sphere

would have to be made large too in order to keep the ratio b/a near 2.

Now suppose Vb/Va < <- 1. In this case Eq. (3. 12) gives

Ebol (3 IS)-

This is a much more moderate condition on Eao than (3. 13). In particular

by staying near b/a = 2 we can keep the field lE.01 near 4 1 Ebol

Accordingly all our future discussions will be restricted to the case where

the inner sphere is negative (to make a potential barrier for the electrons)

and the outer sphere is positive (to make a potential barrier for the protons)

(This is the case illustrated in Fig. 3. 2).
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In conclusion we require that the outer sphere be charged positively to

the potential required to repel the protons. The inner sphere should have a

radius slightly less than half the outer one, and it should be charged negatively

to a potentisl sufficient to repel the electrons. It 3hould be noted that if the

electrons have initially a high enough energy so that they are not kept from

the inner sphere, they will enter it with their kinetic energy oecreased by

an amount -eVa. The electric field will be greatest just outside the inner

sphere and will there be given approximately by

IE4.. A) (V4- Vj) 41 E b. (3. 16)

As an example, suppose the outer sphere is charged to a potential

V b = + 5 x 108 volts and the inner sphere to a potential Va = - 106 volts. This
arrangement would provide shielding against protons of 500 Mev kinetic energy

and 1-Mev electrons. Suppose further that the field )Eaol is to be just equal
to the field E x3 x 107 volts/meter at which vacuum breakdown occurs.

max
Then using b = 2a to give a slight outward pressure to the outer sphere qccording

to the condition (3. 11), we find, from Eq. (3. 6),

6-. 2 (Vb-*.)/Em.; V 33.3 m.tes.

Thus a = 33. 3 meters and b = 66. 6 meters. The fields IE bi and Ebo are

nearly equal and have the approximate value 7. 5 x 106 volts/meter.

Stability of Two Concentric Charged Spheres

Besides the effects discussed above there is the problem of stability of

an electrostatically charged concentric spherical system. Although we have

already guarded against buckling instabilities by imposing tne criterion (3.11),

Earnshaw's theorem states that no electrostatic system can be in a state of

stable equilibrium, and we must look into other type of instability that may

occur. Now it is a characteristic of all linearized theories of equilibrium
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Fig. 3. 3 Geometry of the Off-Center Spheres
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that it is impossible to predict the form which an instability will take; the

best that can be done is to assume some small departure of a specific type

from the equilibrium state and calculate the forces Tending either to restore

the system to equilibrium (in which case the system is stable) or to increase

the departure from equilibrium (in which case the equilibrium is unstable).

In the case of the oppositely charged concentric spheres any change in their

concentricity will give rise to a redistribution of charge on their surfaces

such that there will be a net attractive force between them. Without some

kind of supporting structure any movement away from concentricity will

cause the spheres to collide. Accordingly we shall calculate the net force

produced as a fuiction of the off-center distance by extending a method given

by Smythe (Reference 2, p. 141).

We first need to calculate the electrostatic potential as a function of

position in the space between the two spheres when they are displaced a small

distance x. We choose the origin 0 at the center of the inner sOhere (Fig. 3. 3);

then the equation of the outer sphere of radil, b with respect to the center of

the inner is, to the second order in x/r,

+I, (too, ) + !:P C' 3 7r r"a"{+ +

Here PI (cos 0) = cos 0, P 2 (cos 0) = (3 cos 0 - 1)/2 are Legendre polynomials

of the first and second order. Solving Eq. (3. 17) for r we have approximately

r% [+1 -oss- -- ! (3. 18)

Since here the boundary conditions involve terms up to O(xz /b) and since

both r = 0 and r = 9O are excluded from the field, the potential between the
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two spheres must be of the form

V(r,)xA*!-- +R4J1(C4S)4[EVA+ i (9*5), (3. 19)

in which C, D are correction terms proportional to x and E, F are correction
2terms proportional to x . The boundary conditions are

Vj 1,, 0) = V, (3. 20a)

V(h Six %]/b)<.,,-(,/1) si,'J, e)= v1. (3. 20b)

Application of the first boundary condition (3. 20a) gives, on equating like

powers of cos 0,

B E F_
A - - - F-= V1, (3.2 la)

0C, D 01 (3. Zlb)

4, 3 =0 FT . (3. 21c)

Application of the second boundary condition (3. 20b) gives, when terms of
2

order higher than x are neglected and coefficients of cos 0 are set equal,

at + + 5 6%E F =V (3.21d)
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- O 6+ o (3. Ze)

__' 'lA '3b0. (3.Z If)
i67 61 2. #1

Solving, we have

A j 6V 0" .) (V" - Vs.)l (3 .22a)

_ _ _(3. ZZb)

It will appear that the other coefficients are not needed in calculating the force

between the spheres.

The surface charge density on the inner sphere is given by

2r Ir=I

J4- j)

( F% :041 (3231

When this is integrated over the surface of the sphere a, the terms in Pl(cos 0)

and P 2 (cos 0) give no contribution. Thus the charge on the inner sphere is

-l___4& _6 __-2 _241 
(3 .Z4)

-(b'k- OXb-%)- a, 6
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To get the charge on the outer sphere we must express the potential

between the spheres in terms of the radius vector r' of a field point with

respect to the center 0' of the outer sphere. This is related to r by an

equation analagous to (3. 18), viz

rxr' (+ L se-C-o siu'G). (3.25)

The angle 0 remains the same when referred to the new origin in the order

of approximation to which we are working. In terms of r' the potential

between the spheres becomes, to O(x ),

-I-& e+ r' osG+ (3. 26)

The potential outside the outer sphere is, in terms of r',

r

The surface charge density on the outer sphere is given by, according

to Gauss' law,

orb(8) =- IL 2V vrirI1W 2 r' risel6 V" lr,-

Vz i 2D 28O\
- L - + Coe + (3.281
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When this is integrated over the surface of the outer sphere, we get for

the charge

lb h~j B= 6I-A, v (3.29)(b'-b)(b-a)- a X2

From Eqs. (3. 24) (3. 29) the coefficients of capacitance are

Ca AbcJIL- ' I (,)

t3. 30)
CI= C.=I" tl

where

,,)]"- Op" 0t(,-,)(b -a) .

Now as the spheres are displaced by the distance x, the charges qas

qb remain unchanged. Hence,

S(bV&-aV.) 6_-____ ._)

b-

and the new potentials VI, V2 are given in terms of the potentials Va , V
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of the undisplaced spheres by

(3. 32)

Thus we can calculate the electrostatic energy

~ -L (Cl 1  2c 1,y cy~ (3.33)

and find

v- 2.vv+ LXVII
CLIO :2a 6 , V,, +,V V3.34)

The force per unit small displa:ement x can then be obtained as follows.

F CL(~~,-,tX% W A

la W-41)( )2

In view of considerations ih the previous section we put b = Za and

IVa l << Vb I. Then Eq. (3. 25) reducesq to the approximate formula

F VIL (.6

- -
(336

S7

As an example of the magnitude of the instability force constant F/x, consider

the previous case where the outer sphere was charged to a potential

V b = 5 x 108 volts = 1. 67 x 106 statvolts and the inner sphere has radius
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a = 33. 3 meters = 3. 33 x 103 cm. Then we find F/x is approximately

0. 958 x 109 dynes/cm, or about 5480 lbs/inch. This value is for small

displacements only and may be expected to increase rapidly as the displacement

increases. Furthermore, for light-weight non-rigid balloon-type structures,

one may expect the off-center instability to be aggravated by other effects,

such as distortions of the spheres.

45



4. MAGNETIC SHIELDING-BASIC CONSIDERATIONS

Motion of Charged Particles in a Magnetic Field

The principles underlying the operation of a magnetic shield for a space

vehicle are more subtle than those governing a passive shield or electrostatic

shield. The action of any magnetic shielding system depends on the Lorentz

force F = (e/c); H exerted on a particle of charge e moving with vector

velocity v in a magnetic field H. (The force equation, like all equations in
this chapter, is written in Gaussian units with c equal to the speed of light.)

This force is proportional to the charge, the particle velocity, and the magnetic

field strength. The line of action of the magnetic force is perpendicular to

both the particle velocity and magnetic field. No force is exerted by the

magnetic field on a charge at rest. Since the magnetic force is perpendicular

to the velocity, no work is done on the particle and the kinetic energy remains

constant.

In a uniform magnetic field, a charge moves in a helical path which spirals

around a magnetic line of force. If the particle has no velocity component

in the direction of the field, the spiral path becomes simply a circle of radius

E v E+ k' 14. 1),,H c .° •".'

Here v is the component of particle velocity normal to a line of force and E

is the relativistic energy of the particle, equal to the sum of its kinetic energy2
Ekir and rest energy m 0 c . For nonrelativistic (low energy) particles the

kinetic energy is small compared to the rest energy. Ns-lecting the term

Ekn by comparison with 2m 0 c 2Ekin in Eq. (4. 1) and putting E kimv 2

we obtain the nonrelativistic expression for the "cyclotron radius"

Rit "04V ( F-ki"(4.2)
eH
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The tendency of charged particles to move in spiral paths around a line

or force is modified somewhat if the magnetic field is not uniform. Consider.

for example, a monopole magnetic field whose lines of force are straight lines

diverging radially outward from a single point. Those lines of force passing

through given closed curves in space form surfaces, called "flux tubes". One

possible set of flux tubes for the field under consideration is a family of right

circular cones with vertices at the magnetic pole from which the lines of force

radiate. The paths of charged particles in the field will be geodesics, or

"straightest lines", on these conical flux tubes. Such geodesics spiral toward

the apex of the cone, reach a certain distance from the apex depending on the

sharpness of the cone (which in turn deends on the particle energv) and then

spiral down the cone away from the apex. This may be illustrated by drawing

a straight line on a sheet of thin paper or cellophane and rolling the sheet in

the form of a cone. The operation of rolling transforms the straight lines

drawn on a flat surface into geodesics on a cone. In a sense, the magnetic

field performs geometrical operations on the path of a charged particle; the.

most important dynamical property, namely the energy, remains unchangee

The tendency of charged particles in a nonuniform magnetic field to

move like reversing conical helices is called the "magnetic mirror" effect.

It occurs whenever the gradient of the field has a component in the direction

of the field or equivalently, whenever flux tubes generated by circles decrease

monotonically in cross-section.

The most characteristic features of charged particle motion in a magnetic

field,. namely a tendency toward circular or cylindrical helical motion in a

nearly uniform magnetic field and magnetic mirroring in a field with gradients,

may be used to synthesize magnetic radiation shields. Before discussing in

more detail the way in which such devices would operate, we shall first

consider how magnetic fields suitable for shielding might be produced.

This example may appear somewhat unrealistic, since magnetic
fields in nature do not have sources or sinks; however, the lines of force of
a bar magnet do not deviate very much from radially outward straight lines
in regions near the poles, and the qualitative features of the particle motion
about to be described are similar to those which occur whenever magnetic
field lines converge or diverge. The field under discussion may be imagined
to be that of a very long. thin bar magnet in a region near one end.
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Generation of Magnetic Fields

Until recently, magnetic shielding of spacecraft against high energy

charged particle radiation was ruled out by the large electric currents and

maqsive conductors necessary to generate the very strong extensive magnetic

fields that would be required. Iron-core electromagnets would not be useful

for shielding because soft iron saturates at a field of about 20, 000 gauss and,

as will be shown later, field-strengths of the order of 100, 000 gauss are

needed for shielding. Air-core solenoids with very high currents must be

used, since at high fields ferromagnetic materials offer no advantage and

simply add weight. If solenoids are built using ordinary conductors (such as

silver, copper, aluminum) the cross-section of the turns must be large in

order to minimize the resistance. This makes the coil very heavy if a strong

magnetic field spread over a large region is desired. A large power plant is

needed to drive the currents through the coil. In spite of the rather low

resistance of the coil, enormous amounts of energy would be converted to heat,

since heating is proportional to the square of the current. This heat would

have to be dissipated in cooling water flowing in tubes within the coil in order

to prevent melting of the windings. An example of a copper solenoid magnet

with fields of the order needed in magnetic shielding (but over a much smalit-.

working space than would be needed in shielding applications) is the magnet

used at Bell Laboratories for critical field experiments on superconductors. 8b

This magnet can generate a field of 88, 000 gauss over a cylindrical working

space 5 cm in diameter and 10 cm long, using 1. 5 megawatts of electric power.

A cooling system using 1000 gallons per minute of cold water is required to

dissipate the power, almost all of which is converted into heat. The associated

equipment (motor-generator set, switchgear, cooling towers, etc. ) requires

several large rooms and the total cost runs to several hundred thousand dollars.

All this is required for a magnetic field far less extensive in space than that

needed for space vehicle shielding. Magnetic shielding using ordinary con-

ductors is clearly out of the question because of the inordinate weight, power

and cooling requirements.

The prospects for making air-core solenoid magnets giving high field-

strengths extending over large spatial volumes were considerably improved

in 1961 by the discovery of superconducting materials which retain their

properties in the presence of strong magnetic fields. It was discovered by
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H. K. Onnes in 1911 that certain materials lose their electrical resistivity
81-82

when cooled to within a few degrees of absolute zero. Onnes almost

immediately suggested that superconducting materials be used to construct

air-core electromagnets, but his efforts led to little success because in the

so-called "soft" superconductors available to him (lead, tin, and mercury) the

superconducting state is destroyed by a small magnetic field (a few hundred

gauss). It was later found that "hard" superconductors may have critical

fields (magnetic fields above which the superconductivity is "quenched" or

destroyed) of a few tens of thousands of gauss. Recently, it was discovered

that certain hard superconductors, particularly the molybdenum-rhenium and

niobium-zirconiurn alloys, and the niobium-tin and vanadium-gallium inter-

metallic compounds, Nb 3 Sn and V 3Ga, have critical magnetic fields of the

order of 100, 000 gauss or higher and are furthermore capable of carrying
85

very high current densities. The high current-carrying capacity of these

hard superconductors, in contrast to that of soft superconductors where all

the current must be carried in a thin layer near the surface, seems to be

derived from currents flowing within the body of the conductor in superconducting

filaments. These filaments are probably associated with dislocations in the

crystalline material. Using solenoids made of hard superconductors with their

high critical fields and current-carrying capacity, it is probably possible to

generate, without the continuous expenditure of electrical power and without

Joule heating, high magnetic fields over large regions, suitable for space

vehicle shielding. This assumes that the by no means trivial technical problems

associated with operation of superconducting materials in large volumes at

high magnetic energies and cryogenic temperatures can be overcome.

Comparison With Electrostatic Shielding

Before going into the detailed discussion of magnetic shielding, it is

well to discuss the aavantages of electromagnetic shielding over the other

type of active shielding proposed for space vehicles, the electrostatic system.

First, shielding designs using magnetic fields are effective against both

positive and negative charged particles. In fact, a magnetic shield designed

to be effective against protons having a few hundred Mev kinetic energy will

*The designations "hard" and "soft" as applied to superconductors

refer to the mechanical hardness or softness of the material.
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automatically be equally effective against electrons having that energy and much

more effective against electrons of lower energy. Since in the actual space

environment electrons are seldom found with energies much above 1 Mev,

electrons and the bremsstrahlung x-rays they produce will never be a problem

in a vehicle designed around an electromagnetic proton shield. By contrast

an electrostatic system designed to shield against protons would produce a

concentrated flux of very high energy electrons unless an unmanageably

large dual electrode system with its attendant breakdown, charging, and

stability problems were constructed and put into operation. Second, a

properly designed magnetic shield can protect against particles of very high

energy. Whereas a magnet providing shielding against solar flare protons

of 1 or 2 Bev energy appears not impossible within the framework of future

technology, the practical problems associated with the design of an electro-

static system capable of generating and sustaining potential differences of sev-

eral billion volts appear so overwhelming as to completely rule this system

out for high-energy particle shielding.

Motion in a Dipole Field

We shall consider only uncontained magnetic fields in this report.

An uncontained field design is one in which a significant fraction of the

magnetic energy is outside the device. The field falls off roughly as I/r 3

at a large distance r from the coil producing the field, but is effective

since a small deflection of an oncoming particle far from the coil will cause the

particle to stay away from the protected area. For discussions of contained-

field devices, see References 78 and 79.

At large distances from the current-elements producing the field,

any uncontained magnetic field goes over to the dipole field. A dipole is a

very short bar magnet with very high pole strengths or, equivalently, a very

small coil carrying a very high longitudinal current. A reasonable idea of

how an uncontained magnetic shield would perform can be obtained by con-

sidering the motion of charged particles in a dipole field, with departures from

ideal behavior caused by the finite size of the coil to be explained later.

The motion of charged particles in the field of a magnetic dipole was

first studied by St6rmer 7 5 in connection with Birkeland's theory of the aurora.
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Further work on this problem, directed primarily toward understanding

the geomagnetic effects of cosmic radiation, was done by Lemaitre and

Vallarta, 61-65 Dwight, 66 Sch!iter, 67 Firor, 68 .ory, 69 Lus t, 70 Kelsall, 72
73

and Tooper. The relationship of magnetic shielding to geomagnetic effects

on cosmic radiation is not accidental, because the earth's magnetic field

provides a very effective shield against solar cosmic ray particles in the

energy range up to a few Bev.

A dipole with moment a = e"z a situated at the origin with axis in the

z-direction gives a static magnetic field derived from the vector potentia1

______1 = oL- . '4.3)

The field components are found by differentiating the potenhial with respect

to the three coordinates according to H = curl A. In Cartesian coordinates

(x, y, z), cylindrical rnordinates (w, 0, z) such that x = W cos 0, y = asin#,

and spherical coordinates (r, 0, f) such that Z= r sin 0, z = r cos

Fig. 4. 1), we obtain for the magnetic field

-0 3 E* 3 3e - e

r r, r!

A S0j A 00- (4.4)

r V r

A A
Here eX e Y, etc. represent unit vectors in the directions of increasing x, y,

etc. The differential equation of a magnetic line of force, or flux line, is

r40 r / me (4.5)
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dipole with moment a e a situated at the origin with axis in the

z-direction gives a static magnetic field derived from the vector potential

-0 AA4 3)

The field components are found by differentiating the potential with respect

to the three coordinates according to H = curl A. In Cartesian coordinates

(x, y, z), cylindrical roordinates (af, 0, z) such that x = 0 cos 0, y = 'sin#,

and spherical coordinates (r, 9, f) such that Z= r sin 0, z = r cos 0(Cf.

Fig. 4. 1), we obtain for the magnetic field

7 -9 rS

A~ SWS A l-W(4)

rs r

A A
Here e x , e y, etc. represent unit vectors in the directions of increasing x, y,

etc. The differential equation of a magnetic line of force, or flux line, is

.(r/H, = G/(4 5)
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in spherical coordinates. Solutions of this equation are of the form

rw.r si"'6, +means*. (4.6)

Here r 0 is the distance from the dipole to the point where the flux line

intersects the equatorial plane 0= 7r/2. The shape of a line of force is

independent of the dipole moment a. A typical flux line for the dipole field

is shown in Fig. 4. 2.

The equation of motion of a relativistic particle having charge e and

rest mass m 0 moving with velocity ina magnetic field H is, in Gaussia

units with c equal to the speed of light,

__., -,x .(4.7),
t (0- q.

Since the force on a charged particle due to a magnetic field is always

perpendicular to the velocity, the magnetic force does no work on the

particle. This means that the energy-and hence the speed-of the particle

remains constant. This can be shown formally as follows:

__ Iwe"c.. .. v
A t- aLt ,- .St (I- 'l./l'ey/

=- '. (vC, 4)- 0.

Thus the energy E = m 0 c 2/(l - v 2/c 2 ) 1/2 is a constant of the motion* and
2

so is the "relativistic mass" E/c . Accordingly the equation of motion can

* Although the magnetic force does no work on a charged particle, the
self-force does do work. It has been assumed here and will be assumed in
the sequel that the particle does not lose energy by radiation. This is a good
approximation except for extremely large valu-s of particle energy and
magnetic moment.
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be written in the form

C.(48

where Eq. (4. 3) has been used to represent the dipole field.

Because the energy of the particle is conserved, the speed, v = '4

remains constant. Write ds = v dt. The arc length s will be used instead

of time t as independent variable in the equations of motion. Written this

way, the parametric equations for the trajectories involve only geometrical

quantities. Considering the components of the position vector x as functions

of s, we write the equations of motion as

I-' AM A- (.) (4.9)£ ev A~s

The quantity

has dimensions of length and is called the Stormer length or Stormer radius
2

corresponding to the particle energy E = Ekin + m 0 c and dipole moment a.

The Stormer length represents the radius of a circular particle orbit in the

equatorial plane of the dipole, found by equating the centripetal force to the

magnetic force in the equatorial plane. Such motion is possible because to

this particle the field appears uniform in intensity and direction. In the

second way of writing Eq. (4. 10), the particle speed has been found in terms
2

of the energy and the energy resolved as a sum of the rest energy m 0 c and

the kinetic energy Ekin*

Numerical values of the St'rmer unit are plotted for protons and electrons
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as a function of kinetic energy and magnetic moment in Fig. 4.3. Values

of magnetic moment of 10 11 or 10 12 gauss cm 3 correspond to what may

reasonably be achieved aboard spacecraft using superconducting solenoids.

The particle energies have been chosen so as to include Van Allen particles and

solar flare protons. Notice that the Stormer radius at low kinetic energies

is much greater for electrons than for protons; this is because the electron

rest mass is smaller by a factor of 10 . . For a given magnetic moment and

particle energy, electrons are easier to shield against than protons.

Introduction of the Stormer unit permits the problem of motion in a

dipole field to be scaled for all values of particle energy and dipole moment.

All distances used need only be given as multiples of the Stormer radius.

The axial symmetry of the dipole field leads to a first integral of the

-component of the equation of motion (4. 8). The fact that the vector

potential (4.3) is independent of + gives rise immediately to a conservation

theorem for the momentum conjugate to the + -coordinate. This canonical

momentum has dimensions of angular momentum, but is not strictly the

angular momentum of the particle. To see this, recall that the Lagrangian

function for a charged relativistic particle moving in an electromagnetic

field derivable from potentials is 3 ,4

X i. +~ 1~~c'-tC) A.4-~ (4.11)

Using the vector potential for the dipole field given by Eq. (4.3) and ex-

pressing the velocity components in spherical coordinates, we have for

the Lagrangian of a charge in a magnetostati; dipole field,

_i I 4 r &"L' 0 ) 1  - (4. 12)

Here the dots denote differentiation with respect to time. The Lagrangian

(4. 12) is independent of ;; it follows directly from Lagrange's equations
3that the momentum conjugate to is conserved. This momentum is
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F+ t rZ 1 (4.13)

~+ I r

The conserved canonical momentum p, has units of angular momentum. It

may be expressed in terms of the angular momentum (E/c 2) v Cst of a particle

moving in the equatorial plane of the dipole along a circle with center at the

dipole and radius Cst by introducing the (dimensionless) Strmer constant

E (4.14)

The factor 2 has been inserted for the sake of simplicity in later equations.

It may be seen from (4. 13) that p represents the angular momentum of

the particle about the dipole axis if and when the particle is an infinite distance

from the dipole. In such a case the second term in Eq. (4. 13) arising from

the vector potential goes to zero. This suggests the following interpretation

of p and Y in terms of impact parameters.

Consider a particle incident on the dipole from infinity, and the straight

line asymptotic to the orbit at infinity (i. e. , the straight line the particle

follows before it is deflected by the magnetic field of the dipole). The

asymptotic line will pass a certain distance P 0 trom the dipole axis (see

(Fig. 4. 4). This is because the asymptote and the dipole axis form in general

two nonintersecting skew lines in space. A minimum distance between two

skew lines can be defined; it is equal to the length of their unique common

perpendicular. The distance 1P 0 j may be thought of as an "impact parameter".

The common perpendicular between the asjrmptote and the dipole axis together

with the asymptote determine a plane (Fig. 4. 4). Suppose that a line is

constructed in this plane parallel to the asymptote and passing through the

dipole axis. This line and the dipole axis determine a second plane which

is perpendicular to the first. Let X be the angle in this plane between the

dipole axis and the line parallel to the orbit's asymptote. The angular
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momentum (at infinity) about the dipole axis is, in terms of the impact par-

ameters,

P (r v (4.15)

Comparing (4. 14) with (4. 15) we see that the dimensionless constant

is given in terms of the Stormer distant Cst and the impact parameter

P 0 by the relation

2Y-U o t)SO SY.- (4.16)

The negative sign has been attached to P 0 in Eqs. (4. 15) (4. 16) because

Y can be either positive or negative depending on the sign of the angular

momentum at infinity. The si ;n is chosen so that the angular momentum will

have a positive or negative sit. according as i = d /dt is initially positive

or negative. The motion depends strongly on which side of the dipole axis

the particle is aimed initially. The magnetic field influencing the particle

will be either "generally upward" or "generally downward" with respect

to an imaginary observer standing on the equatorial plane. The force on

the particle will be in the same general direction regardless to which side

of the dipole axis the particle was initially directed. This is in sharp

contrast to the behavior of a particle under the influence of a central force,

where the force is directed either toward or away from some fixed center

like a charged nucleus. Depending on the sign of the impact parameter,

the particle may be either forced away from or attracted into the region of

the dipole. Different behavior of the trajectories is to be expected for different

signs as well as different absolute values of the integration constant

Forbidden Regions

Further information about the trajectories can be obtained from the

conservation of canonical angular momentum expressed in the form (4. 13)

60



(4. 14). It is possible to find regions forbidden to particles having various

initial values of angular momentum because they cannot enter them without

violating the conservation law for p6. The size of these regions depends on

the St~rmer length and hence on the particle energy and dipole moment. For

a given St8rmer unit there is also an axially symmetric region which particles

incident from infinity cannot enter (even though it is accessible to bound

particles) no matter what their value of angular momentum. The "absolutely

shielded region" can be determined without explicit knowledge of the traject-

ories.

The forbidden regions corresponding to various values of angular

momentum (and hence to various values of the Stormer constant Y) may be

determined by writing Eqs. t4. 13) (4. 14) together in the form

rs =&G + -=i C + Y C(4. 17)

The quantity Q is the ratio of the 6-component of velocity to the total speed,

and so its absolute value must be less than, or at most equal to, unity. We

obtain a violation of this condition by putting Q > 1 in Eq. (4. 17), or

r r

Thus, for Q > 1, the quantity r/Cst must lie in the range

We need consider only sin 0 > 0 and r >0 since octants other than the first

may be obtained by reflection through the dipole axis and equatorial plane.

With this condition, the root with the negative sign is always negative, so we

discard it. Thus, for each value of II, whether positive or negative, there is
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a forbidden region given by

A( ) 00 t  s., -e - (4. 17a)

Another violation of the condition IQI % 1 is obtained by putting Q< - 1

in Eq. (4. 17). This implies

r Ir
S 'G r- +2 w- +sA6 <o,

whence r/Ct must fall in the interval

-- t - 6

___________<.< • (4. 17b)

This gives a second forbidden region lying outside the first which, however,

exists only for negative values of .

The inner forbidden regions A(l) and the outer forbidden regions B(Y)

for the dipole field are shown in Fig. 4. 5. The outer forbidden regions

have the interesting property that, in cross-section, a segment AFB of a line

drawn from the dipole such that it intersects the boundary of B(Y) at points

A and B will be bisected by a line parallel to the dipole axis at a distance

- I Cst from it. Thus AF = FB. This property is evident from the inequal-

ities (4. 17) defining B('Y) and the observation that r sin 0 is the projection

of r on the equatorial plane.

The inner forbidden regions A(Y) increase monotonically in size with

increasing Y. For values of Y less than - 1, the outer forbidden region B(Y)

completely surrounds the inner region A41), and the space between these two

regions can only be occupied by bound particles which have either started

out in this intervening space or which have had their energy degraded in some

way. For values of Y greater than -1, B(Y) no longer surrounds A(,/), but

62



4N.

0

0 (

w' 00

u

0

4)0

4.-.

04)

of

40

co ~
>.-

634



the volume of A(V') when ' -l is always greater than the volume of A(-1).

Also the region A(-l) is always included in A(') (Y' > -1). In the equatorial

plane sin 0 = 1, and the intersection of the region B(-1) with the equatorial

plane is a circle of radius I C ,. From these considerations it may be seen

that, for a particular Stormer unit (i. e. , a particular dipole moment and

particle energy), the region A(-l') is iorbidden to all unbound particles, no

matter what their value of Y. The boundary of region A(-1) is given by

_r _ - __+_+ (4.18)

C4* 4 "

This region is toroidal in shape with its major radius equal to -12-1 = 0. 414

Stormer units.

Besides the completely shielded region whose boundary is given by

Eq. (4. 18), there is a partially shielded region which can be entered only

by those particles from infinity having values of Y between -1 and about

0.03. This is the region lying between the outer forbidden region B(-1) and

the absolutely forbidden region A(-1). It is also toroidal, its major radius

is a full St'rmer unit, and its boundary is given by

r (r,,.(4. 19)

The two regions represented by Eqs. (4. 18) (4. 19) are shown in

Fig. 4. 6. Determination of th- degree of shielding provided by regions,

such as that of Eq. (4. 19), forbidden to particles having values of canonical

angular momentum in a certain range can be made by detailed examination

of particle trajectories.

The volume of the totally shielded region whose boundary is given by

Eq. (4. 18) can be determined as follows. Through the transformation

equations r sin 0, z = r cos 0, we find the equation for the boundary
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in cylindrical coordinates:

K~42C~) -~(4. Z0)

Using the shell method of integration, it may be seen that the volume of the

region A(- 1) is given by

0+2

where = CstA = Cst(4- -l). A ten-step integration by Simpson's rule

givea approximately

V , -= O.41Ct (4.21)

for the volume of the shielded region.

Shielding Effectiveness

Calculations were performed giving the range of particle energies over

which the shielding provided by a solenoid of reasonable magnetic moment

would be effective. There is a change of viewpoint involved here: previously

the particle energy was supposed to be held constant and the spherical

coordinates r, 0 were allowed to vary, thereby generating a toroidally

shaped region protected from particles of the given energy. One may also

prescribe a certain closed surface (representing the spaceship cabin) by

giving r as a function of 0 and 4 and obtain limiting values of energy for

particles kept from entering the cabin.

The case of a spherical spaceship cabin of radius r about the dipole

center was considered for simplicity. Feasibility can be shown quickly by

considering the shielding in the equatorial plane of the dipole. This gives

the order of magnitude of the particle energies and size of shielded region
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for which a solenoid of given rrxggnetic moment would be adequate. In the

equatorial plane, 0 =7r/2 and Eq, (4.1 8) for the completely shielded region

reduces to

Cv~ 2. ]' -itjol
r= (4-(. iS4.22)

whereas Eq. (4. 19) for the partially shielded region becomes

r= E. J lt . (4. Z3)

Equations (4. 22) (4. 23) give the limiting values Emin and E. for the
min max

energies shielded by a dipole of moment a in a circular enclosure of radius

r. The meaning of the (relativistic) energies Emin and Emax is as follows.

A point a distance r from the dipole can be approached from any direction

in the equatorial plane by particles, with energy exceeding E ma x . A point

at the same distance is forbidden from all directions in the equatorial plane

for particles with energy less than Erinn. Particles with energy between

Emin and E can approach the 'init r from certain allowed directions

only. In other words, the print r is completely shielded from particles with

energies below Emin and partially shielded from particles with energies

between Emin and Emax* For particles of energy greater than Emax, no

shielding is provided.

To use the energies Emin and Ernax to evaluate the effectiveness of

shielding provided by a particular solenoid, it is necessary to make some

choice of the size of spacecraft to be shielded, since this prescribes the

distance from the dipole center. A sphere of diameter 2 meters was chosen

as an elementary model for the vehicl -_ A value of 3 x 1011 gauss cm 3 was

chosen as a value of magnetic moment that might be achieved using a super-

conducting "air core" solenoid. Values of kinetic energy corresponding to

Emin and Emax were found for protons and electrons as follows:

Protons! Electrons

E k in 866 Mev 1. 54 Bev
kin

Ek in  8. 1 Bev 9 Bevmax
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The shielding calculations can be extended to include directions other

than the equatorial plane with the aid of results given in Reference 6,

pp. 276-281. The basic equation

gives the smallest initial momentum for a particle to reach a point a distance

r from the dipole center at a latitude X through an angle w in the east-west

direction. The quantity Pmax is the momentum corresponding to the energy

Emax , found by using the energy-momentum relation

Et Fict + (4.25)

Values of g appropriate to various latitudes - have been tabulated by
61

L'maitre and Vallarta; for our present purposes we shall take g = 1.

Some special cases of Eq. (4. 24) are

(a) Particles with momentum greater than P(, 0) can approach the

observer at latitude ), from all directions.

PQ ~ ~ ~ ~ -; F)F. As}. (4. 24a)

The effect of the approximation used in Eq. (4. 24a) is to give slightly higher

values for both momentum and energy, but retains the stronger latitude

dependence given by cos4 Xterm.
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(b) Particles with momentum less than P(X,ir) are forbidden for all

directions at latitude ).

(c) The limiting momentum in the vertical direction is

, -- -- , (4.24c)

In conclusion, all particles with momentum greater than Pmax cos4

are assumed to reach the sphere of radius r, and all particles with momentum

less than Pmin cos 4 ?/5. 84 are excluded from the sphere. The results

(in terms of limiting energies) for the former conditions discussed for other

than the equatorial plane are given in Table 4. 1.

Table 4. 1. Limiting values of energy for complete and partial shielding
at a latitude 'X. The magnetic moment is 3 x 1011 gauss cm 3 and the spherical
region under consideration has radius 200 cm.

Protons Electrons

E kin E kin  E k in  Ekin
max min max min

(Mev) (Mev) (Mev) (Mev)

0°  8113 866 9000 1540

10°  7575 790 8460 1450

200 6165 594 7040 1210

300 4205 339 5050 865

400 2305 140 3100 531

500 865 36 1540 264

600 165 0 570 10

700 8 0 125 2.2

800 0 0 9 1.6

900 0 0 0 0
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The shielding effectiveness is strongly dependent on the size and

shape of the solenoid and spacecraft. The particles, some of which are

prevented from approaching the protected area, have energies comparable

to those encountered in the radiation belt and protons associated with solar

flares. The example considered does not shield high energy cosmic rays

effectively.

It is important to determine the effectiveness of shielding for a given

magnetic moment and spacecraft size for energies lying between Emin and

Emax* For instance, in the example cited, the kinetic energy of protons

below which all particles were kept out of the region in question was less than

about 1 Bev, whereas the kinetic energy of protons above which particles

could enter from any direction was the high value of about 8 Bev. In the

range from 1 Bev to 8 Bev nothing was said about whether the particles could

or could not enter, except that if they did enter it would be from certain

allowed directions only. These allowed directions can be determined by study

of particle trajectories. The trajectories can only be obtained by numerical

integration of the equations of motion, since a third constant of the motion,

besides energy and canonical angular momentum, has never been found.

Particle Trajectories-Numerical Integration

In this section we shall be concerned with the calculation by numerical

integration of the charged particle trajectories in a dipole field. The particles

initially form a parallel beam. As this beam enters the region near the dipole,

deflection of the particles occurs and the motion of each is strongly dependent

on its impact parameters. The incident beam of particles will be character-

ized in the following way. At distances far from the dipole, the orbit of a

charged particle is a straight line because the field falls off to zero at infinity.

The actual orbit of the particle, which is in general a complicated three-

dimensional curve, ib asymptotic to this straight line. Imagine the asymptote

for each trajectory to be continued until it intersects a plane passing through

the dipole center and normal to the direction of the incident beam. All par-

ticles in the beaam will be supposed to have the same initial velocity (the same

initial speed and the same initial direction), but the points at which the

asymptotes to each trajectory pierce the plane through the dipole center per-

pendicular to the incident direction will be different. For example, the
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intersection points may be assumed to form a network of squares or concentric

circles. We are interested in following each trajectory by numerical integration

until it recedes to infinity.

A few remarks orienting the present work with other investigations are

in order. Stormer, to whom we are indebted for the first researches into
75

the motion of a charged particle in a dipole field, found the trajectories

passing through the dipole center characterized by different values of his

integration constant Y which is proportional to the angular momentum at

infinity about the dipole axis. He also found that the problem can be scaled

for different particle energies by means of the Stormer unit, and studied

the regions forbidden to particles having various values of angular momentum.

The trajectories which he studied were ordered according to the value of the

angular momentum and were, in general, incident from a wide variety of

directions. An extension of this problem was considered by Lemaitre and
61-65

Vallarta. A charged particle intersects a sphere surrounding the

dipole at a certain point having velocity in a certain direction, all of which

are considered known. If the strength of the dipole is known, then the problem

is to find the incident direction of the particle. This problem is of interest

in the study of cosmic rays incident on the earth, whose magnetic field closely

approximates that of an ideal dipole at altitudes less than a few earth radii.

At greater altitudes the geomagnetic field is distorted by streams of plasma

from the sun and the analysis no longer applies exactly. The results which

one obtains for the incident direction of a charged particle depend strongly on

the point at which the particle orbit pierces the sphere surrounding the dipole

and the direction of the orbit at that point, and a wide variety of initial

directions for trajectories are found

We have seen that, for a given particle energy, there exists a toroidal

region into which particles cannot penetrate. [The boundary of this region is

given by Eq. (4. 18).J Other regions are shielded from particles having cer-

tain values of angular momentum. In order to study in more detail the nature

of the shielding provided by a dipole field, it is necessary to consider an

isotropic flux of particles having a continuous energy spectrum. For purposes

of analysis this may be broken down into the study of beams of noninteracting

particles having the same energy and incident from the same direction.

Thus it is desirable to consider a homogenous beam of particles ordered with
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respect to their initial direction, and observe what happens to this beam as

it moves in the dipole field. The behavior of such a uniform beam has been

studied by Schluter 6 7 and more recently by Kelsall. 72 Schlater determined

the behavior of a beam initially parallel to the equatorial plane of the dipole.

Kelsall studied trajectories which initially make angles between 00 and 350

with the equatorial plane, corresponding to particles from the sun moving in

the geomagnetic field.

In previous work, the trajectories have been found by specifying as

initial conditions the position of the particles in a plane perpendicular to the

parallel beam at some finite distance from the dipole. Kelsall, for example,

used a plane 6 Stormer units away from the dipole. The interval of numerical

integration must be set by continuous examination of the orbit's curvature.

Difficulties are experienced setting stopping conditions, since one wants some

assurance that the whole trajectory has been obtained. In the present report

a method is given whereby the trajectories can be computed all the way from

infinity and boundary conditions applied directly to the asymptotes of the orbits.

The computed points get closer together as the neighborhood of the dipole is

reached; when the particle moves away from the dipole the integration steps

increase once again. The trajectory along its whole lngth from infinity to

the dipole region and back out to infinity is computed. There is no difficulty

with a stopping condition and the accuracy at any point along the trajectory

can be made as good as desired. Whereas in some cases the imposition of

initial conditions concerning position and direction of velocity at a finite

distance from the dipole is probably a good enough approximation, yet there

exist some instances (e. g., particles near the equatorial plane aimed at

nearly one Stormer unit from the dipole, particles aimed near the dipole axis)

where the shape of the trajectory is very sensitive to small changes in the

impact parameters. The representation of a uniform beam of particles by

uniformly distributed asymptotes gives a more nearly correct representation

in such cases. The theoretically correct specification of impact parameters

in terms of asymptotes also gives more confidence in the study of quasi-trapped

trajectories, which are of interest in connection with the Van Allen regions.

We obtain an expression for the magnetic field in a Cartesian coordinate

system inclined at an angle 'X with the original Cartesian system. In such

a rotated coordinate system it is easy to describe the initial position and
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velocity of a particle incident from some arbitrary direction. The coordinates

chosen are obtained from the usual Cartesian coordinates by rotation about

some convenient axis lying in the equatorial plane of the dipole. We arbitrarily

choose the x-axis about which to rotate and let

Co L *" (4..26)

Here )( is the angle between the t -axis and the z-axis. In the application

we have in view it is the angle between the initial velocity of a particle incident

from infinity and the dipole axis. Because the transformation (4. 26) is ortho-

gonal, the expression for the distance from the origin is invariant, i. e. ,

1r 1 + L + 4% +,, IL . (4.27)

Using the transformation inverse to (4. 26), we see that the expression (4. 27)

for the magnetic field in the (g,,i, C) system is, ef I , are unit

vectors in the three coordinate directions,

A + (25 $tsY+31C Cos (4. 28)

A +___ __ 3___ _

Let us obtain the equations of motion in the coordinate system (4. 26).

In doing so we sacrifice some of the simplicity inherent in spherical coordinates,

notably that of the angular momentum integral (4. 13), but we gain an easier
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way to prescribe initial conditions representing particles incident in a

parallel beam at some arbitrary orientation with respect to the dipole axis.

We make the angle of inclination X equal to the angle between a line parallel

to the incident asymptote and the dipole axis (the angle X of Fig. 4.4). The

two Cartesian coordinate systems are aligned with respect to the dipole and

the initial direction of the particle velocity according to the following construction:

1. The z-axis of the (x, y, z) system is selected so that it lies along

the dipole axis.

Z. The system (x, y, z) is translated along the z-axis until its origin

coincides with the dipole center.

3. The system (x, y, z) is rotated about the z-axis until the x-axis

is perpendicular to the direction of the particle's initial velocity.

4. The coordinates are rotated about the x-axis of the (x, y, z) system

through an angle X/Z-X to form a new system (, N,C) such that the C-axis

is parallel to the direction of the particle's initial velocity. The 5 -axis of

the new system is identical with the x-axis of the old. If the particle's velocity

at infinity is parallel to the equatorial plane of the dipole, then there need be

no rotation cf coordinates and the C -axis is the same as the y-axis.

The initial position of a particle is given by specifying finite values of

(s) and I (s) when s -+ - w. The initial value of C(s) at s -- * - o is infinite,

but the value of dC /ds is initially - 1. The negative sign arises because the

particle is directed toward, rather than away from, the dipole. The initial

values of dS/ds and dj/ds are both zero.

In deriving the equations of motion by working out the cross product
v X H, it is essential to note that the (f, i, C) coordinates taken in that order

comprise a left-handed system. The equations of motion in the rotated Cartesian

system are, in terms of the arc length s as the independent variable,

.0 1 3C.~ A-1. (27j2 _f-C1')&4+3j~tS a4 C 1
-4 -Cit L v sO ,- Y Si

. ... V .1 (4.29)

Ae C~~t (, L L+C)rhz

_k7~ 3~ e i 91s-- 3
Jq$ (5t 4 C-fit is]
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As possible aids to the solution of the set (4. 29) we have two "first

integrals". The first expresses the conservation of particle speed and appears

in the form

I.I+ IS (4.30)
1,S/ + 00,

The second is derived from Strmer's first integral (4. 13) by transforming

first from cylindrical coordinates to Cartesian coordinates (x,. y, z) and

then to the rotated Cartesian coordinates ( ). It is

=2Y st +, it C0-X+SItg(.1

As s -- - , d5/ds and d,/ds both go to zero, while dr/ds -I. Also

-'C + o and the fraction on the right hand side of Eq. (4.3 1) goes to zero

as I1C. In this limit, Eq. (4. 31) reduces to

_ ,(4.32)

This is identical with Eq. (4. 16) if we put .(-.o) = P 0 .

In an ordinary scattering problem, such as that of unbounded motion

in a central field of force, the trajectory (including the scattering angle) is

completely determined by a single impact parameter for a given particle

energy. This permits the essential features of the encounter to be described

by the cross section as a function of energy. The problem of scattering by

a magnetic dipole is sufficiently more complicated that three impact parameters
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are necessary to specify the motion. These are: the angle of inclination

between the initial velocity and the dipole axis, and the initial coordinates

P 9 (- Do), Qo = I (- ) of the particle in a plane at infinity perpendicular

to the trajectory's asymptote. The geometric meaning of these quantities is

given in Fig. 4. 4.

In mathematical terms the problem of finding the trajectory of a charged

particle incident from infinity in the field of a magnetic dipole is the following.

We are to solve a set of three coupled nonlinear differential equations of the

second order in which the second derivatives appear only once in each equation:

p- F, (e, , F ; I", R; R' j. (4. 33)

F" , (PI , R; P!, q', P-')(.3

In what follows all equations will be expressed in terms of the dimensionless

variables P = g /Cst, Q = /Cst, R = 1 /Cst, and S = s/Cst. This means

that all distances are measured using the Stormer distance as a unit of length.

We wish to find P(S), Q(S), and R(S) such that the system (4. 1) is satisfied

subject to the "initial" conditions

(4.34)

Here, for example, P'(-wo) means P'(S) = dP/dS evaluated as S --4 - Co. From

the last of the initial conditions (4. 34) we note that S and R diverge in the

opposite sense but at equal rates, i. e.,

.ti., R
s.-- =-. (4.35)
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Because of the complexity and nonlinearity of the system (4. 33)

[9f. the parent equations (4. 29)] it is necessary to perform the integration

by numerical methods on an electronic digital computer. The method for

solution of ordinary differential equations of the type (4. 33) most convenient

for use on an automatic digital machine is the Runge-Kutta method,

In order to apply this method to a system having the form (4. 33) but with

initial conditions given in finite terms at some finite value of S, it is necessary

to choose a small interval of integration and evaluate each of the functions

F 1 , F 2 , F 3 from arguments derived from points in this small interval, including

the end points. The solution is started at the initial point S0 where all the

functions P, Q, R and their first derivatives are given as boundary conditions,

and proceeds to find the values of the unknown functions and their first derivatives

at S0 + AS. Then the new values are taken as initial conditions and the functions

with their derivatives are calculated at a new point S0 + ZAS. This process

may be continued as long as desired, and for a machine computation it is in

general difficult to formulate a suitable stopping condition.

Because of the non-finite boundary conditions (4. 34)i it is not possible

to use the Runge-Kutta method directly for the dipole trajectory problem. For

the greatest accuracy in the method, it is necessary to take AS to be a very

small quantity. This means that the integration proceeds on the computer over

very small increments with printout of the values of the solution occurring at,

say, every 16 or 32 steps (for a binary-based computer). But since the

boundary conditions are imposed at negative infinity, it would require an

infinite number of small integration steps to reach the region in which the

trajectory changes appreciably and in which the interesting features of the

motion occur. It is necessary to make some transformation of the variables

in order that the boundary conditions (4. 34) and (4. 35) may be expressed in

finite terms.

It is desired to make transformations on R and S having the following

properties: (a) when R or S becomes infinite in either the positive or negative

sense, the new variables must remain finite, (b) the transformed variables

must distinguish between plus and minus infinity in the physical variables

R, S, and (c) when R or S has magnitude of order unity'the new variables must
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have comparable values. As a pair of transformations satisfying these con-

ditions, we have chosen the following:

JU = circ*n R qrctoni (Cf/Co), (4.36)

Cat rec*o S c*@. v (5/, g) (4.37)

By "arc tan" we mean the principal value of the function tan -
, that is the value

lying between -7t/2 and +7/Z. When a or S approaches negative infinity,

or a' approaches -7/2. When R orS approaches positive infinity, ,Mor

a' (as the case may be) approaches + W/2. When R orS is in the neiZhborhood

of zero, the slope of the curve is nearly unity, and ) or d" has values in the

neighborhood of zero. These values are therefore comparable with the values

of R or S.

We wish to transform the system (4. 33) of equations in P, 0, R considered

as functions of S into a new system in which P, Q, and^j are regarded as

functions of cr . In doing so it is necessary to find expressions for the old

derivatives dR/dS, etc. , in terms of new derivatives like dd/dcr, and to

determine the boundary conditions on the new quantities and their derivatives.

Moreover in order to start the Runge-Kutta solution, it is necessary to find

the second derivatives at the initial point. As we shall see later, the second

derivatives must be evaluated from the differential equations by a limiting

process rather than by direct calculation, because of the nature of the boundary

conditions.

In order to obtain the various derivatives that will be needed in trans-

forming the differential equations (4. 1), we need the derivative dor/dS, which

can be calculated directly; thus

- = Co S. (78. (4.38)

78



The derivative dR/dS may be expressed in terms of the transformed quantities

by using Eq. (4. 6) as follows:

(4.39)
S crr

Solving for dy/do" and evaluating this expression as - c - 7/2, we have,

since dR/dS and R/S both go to - I initially,

'I+s
~(-~I)~~ ~~Iwa(4.40)

as the initial condition on dm/dcr. By a second differentiation, d R/dS may

be expressed in terms of d2L/dv" and dp/dor.

~C'f~ &~1 0 Gs% 4 ,

= - )Vd,!-, (.1
LS AS &rS. cal * JL6

The. derivatives of P and Q with respect to the new variable or are

easier to calculate but one must be more careful in establishing the initial

conditions on them. In fact it is necessary to use the parent equations (4. 29)

with g, . C, s replaced by P, Q, R, S (and Cst set equal to unity) to establish

correctly the initial values of dP/dtr and dQ/dol. We have

1=- COS - (4.42)

,S ,,S aro ,

The initial value of dP/do" is found by solving Eq. (4. 42) for dP/dt, taking

the limit as T - 2/2, and using L'Hospital's rule since numerator and

79



denominator both go to zero:

-( -

J.aA -I _ _
P  

_ -' s _Es.". ~I f J JX sF-- (4.43)

After noticing from the dimensionless form of Eq. (4.'29a) that d P/dS2 goes

to zero like - sin'I/R 3 as S -- p - a, and that

4.__ -A4. = .

we have

-- S, , . (-) -- SM.. (4.44)

The derivative d 2P/dS? is found in terms of the new variables and their

derivatives by a method analogous to the derivation of Eq. (4.41).

AS' AS r AS &r -

- 4 
t p , r (4.45)

The derivatives dQ/dS and d ZQ/dS in terms of the transformed variables

80



may be written down in strict analogy to Eqs. (4. 42) (4. 45):

C APSor (4.46)

__ -QOS I -2 (, d Ces" d . (4.47)

A - A - s.rc e C -

We obtain the limiting initial value for dQ/dr in a manner analogous to the
2 2

derivation of Eq. (4. 44), but in this case d Q/dS goes to zero faster than

1/R3 as S - ac, so that

O C/-) S - =0. (4.48)

2.. s"

Using the expressions R = tan JA, (4. 39) (4. 41) (4. 42) (4. 45) (4. 46)

(4. 47), we find that the equations of motion (4. 29) written in dimensionless

notation assume the following form in terms of the transformed variables.

CS 4-

(4. 49a)

+.-,+,..,.. , /

Jj=r (r&+,.. COS$ /"a

----------- (4.49b)
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(4. 49c)

The numerical integration problem is to find P(u), Q(g'), y(r); P'(r) = dP/d0,

Q'(r), JL'(iv) subject to the initial conditions

)=0 o(4.50)

.- W/ *2, 7, .'12 -i

for various values of A.

In order to solve the system (4. 49) subject to the initial conditions (4. 50),

it is necessary to know the values of the second derivatives at the initial value

of the independent variable. Ordinarily these can be gotten by direct substi-

tution of the initial values of the dependent variables and their first derivatives

into the differential equation. This can be done in the present case only by

the use of limit processes. It is convenient to evaluate the second derivatives

using the expressions (4. 41) (4.45) (4.47) and the original differential equations

(4. 29) instead of the rather cumbersome equations (4. 49). In what follows we
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shall have occasion to use the limit relations

C.II.... - 'JO - (4. 51a)

. S ° (4.'51b)

2 2To evaluate d P /d 2 we solve Eq. (4. 41) for this quantity, remembering

that d)A/ddr approaches - I as a,--i- - 7c/2.

, A.te (4.52)- /-21=) "' L- is-2

We use Eqs. (4. 50) (4. 51) to evaluate the cosines appearing in the first term.

The last two terms are evaluated'directly from Eqs. (4. 26) (4. 37). The second

derivative d zR/dS2 is given in the limit by those terms of Eq. (4. 29a) (in its

dimensionless form) which involve negative powers of R. Thus, since dP/dS

and dQ/dS are bounded,

=5z %=I (4. 53)

We therefore obtain for the limiting value of d52/do z as a--. -W/2,

- Q+S)=O- (4. 54)

S and R cancel each other in the limit because of Eq. (4. 35).
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The evaluation of d2 P/dr 2 is similar except that the inverse powers

of R in the expression for d2 P/dS is not sufficient to cancel the fourth
2 2

power of S. Solving Eq. (4. 45) for d P/dr" , using Eq. (4. 51), remembering

that tan r S and using Eq. (4.44), we have

-W/) 1 L2 . 2 +'2S(i

The second derivative d2 P/dS2 is given in the limit by those terms in

Eq. (4. 29a) having powers in R equal to - 3 and - 4 Substituting this result

in (4. 55) one obtains

+ S S1 (4. 56)

Since SIR goes to - 1 in the limit as S -- -oo, the quotient S 4/R 3 goes to

- S and S 4/R 4 goes to + 1. This means that the second and third terms on the

right of Eq. (4. 56) cancel. The first term is just 3Q 0 cos . The last term

must be evaluated using L'Hospital's rule, as follows:

-S = s-- = -- l "l = (4.57T)

The limit is zero because no powers of R greater than - 3 occur in the

limiting equation for d Q/dS2 obtained from Eq. (4. 29b). Hence from Eq. (4. 56)

we see that d 2P/dw has the finite value

r"( ~ ~ a"-X (4.58)

in the limit as cr--* - 7r/2.
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Finally we need to evaluate dZQ/d 2; this will require a multiple use
2 2

of the L'Hospital rule. Solving Eq. (4. 47) for d Q/do" , taking the limit as

W -W/2, and using (4.51), one finds

The first term is evaluated by retaining only those powers of R greater than

- 4 in the limiting expression for d Q/dS2 gotten from Eq. (4. 29b); L'Hospital's

rule is applied to the second term.

-- 3f°'0  + 4 
---- ' s c + ----T 2(4.60)

The quantity S(dP/dS) can be evaluated in the limit by a method similar to that

in Eq. (4. 57); the limit is zero because no powers of R greater than - 3 occur
2 2

in the limiting equation for d P/dS . For the denominator in the last term we

have

Accordingly Eq. (4. 60) becomes

-Z-WT W. (4.62)
aA A

This equation is solved to give the desired initial value for the second

derivative Q"(d'):

CAM (4.63)

85



The system (4. 49) of differential equations may be integrated subject

to the initial conditions (4. 50) now that the starting values (4. 54) (4. 58) (4. 63)

of the second derivatives have been determined., The initial conditions are

not separate entities from the differential equations: It was for convenience

in imposing the initial conditions that the equations of motion were written

in the form (4. 29) using the rotated Cartesian coordinate system. The equations

of motion were rewritten in the transformed variables A& and (r because the

initial conditions were imposed at infinity. The differential equations (4. 29)

were used strongly in setting up the new initial values (4. 50) for the system

(4. 49). And the equivalents of the differential equations (4. 49) were used in

evaluating the starting values for the second derivatives.

In practice the integration is performed by choosing values of impact

parameters -(, Pop Qo and the integration step size AT for the independent

variable. The variable of integration d- is permitted to take on values from

-7r/2 to + W /Z. A convenient interval accurate enough for most cases was

found to be 44'= 7r/100. Thus 100 points are computed for each trajectory.

The points in P, Q, R space which are distant from the dipole are far apart;

as the trajectory gets closer to the dipole the points get closer together. The

closest spacing of the physical points occurs in the neighborhood of S = 0;

this point is determined uniquely by the condition that R and S are initially

equal in absolute value. As the trajectory moves away from the dipole the

points get farther apart again. The computation is stopped when 0= + 7r/2,

which corresponds to S = + 00. For most trajectories the complicating

features, such as loops, spirals, etc. , occur in the vicinity ofrS = 0.

Occasionally a trajectory is so complicated that the radius of curvature is

small in the region where the interval between points is becoming large.

Such trajectories are recomputed using a smaller value for Ac- in order to

obtain the correct shape of the curve.

Figure 4. 7 shows a group of trajectories moving in the equatorial plane'

of the dipole. The dipole is supposed to be directed out of the paper which

means that the magnetic field lines are going into the paper. If particles start

out in the equatorial plane, they remain in it, because the magnetic lines of

force are always perpendicular to the equatorial plane. The impact parameters

P 0 QO marked on each trajectory are in Stormer units of length. For all

particles in the figure, which are assumed to be positively charged particles,
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the initial velocity v is directed from right to left, H is always into the paper,

and thus -'X H is downward. The trajectories in the equatorial plane can be

calculated in closed form using elliptic integrals, but they were obtained by

numerical integration so as to check the method by comparison with previous

work of Stormer. Trajectories in the equatorial plane have the interesting

property that the radius of curvature at a given point (measured in Stormer

units) is equal to the cube of the distance (also measured in Stormer units)

from the dipole. One trajectory is spirally asymptotic to a circle of radius

one Stormer unit with center at the dipole.

Figure 4. 8 shows a group of trajectories incident parallel to the dipole

axis and in a plane passing through the dipole axis. Although the trajectories

lie initially in a plane, the magnetic forces soon move most of them out of

that plane, and they become skew curves in space, of which Fig. 4. 8 and the

illustrations to follow merely give two-dimensional orthographic representations.

An exception is the particle aimed directly at the dipole center; it is undeflected

by the magnetic field and moves along the dipole axis. This figure shows an

example of the magnetic mirror effect discussed earlier. The trajectories on

the left side of the illustration are symmetric with those on the right in this

particular case, and are omitted for the sake of simplicity.

Figure 4. 9 shows the behavior of a beam of particles making an angle

of 22 1/2 with the dipole axis. The impact parameters of one particle are

such as to put that particle in a magnetic mirror orbit.

Figure 4. 10 illustrates some trajectories starting out at an angle of
450 with the dipole axis. Other trajectories at 450 with impact parameters

different from those shown here get involved in magnetic mirrors. The

trajectories in this figure show particularly well the shielding properties of

a dipole field in deflecting particles away from a toroidal region centered on

the dipole.

In Fig. 4. 11 the behavior of a beam from 67 1/20 is shown. These

particular trajectories show a tendency to form complicated nodes above and

below the dipole. This behavior is different from the magnetic mirror effect

and is common for trajectories initially making angles of 900 plus or minus

about 300 with the dipole axis.
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Figure 4. 12 shows a side view of a beam incident parallel to the

equatorial plane, making an angle of 900 with the dipole axis. The equatorial

plane is represented by the straight horizontal line. The trajectories below

this plane are mirror images of the ones above, and are not shown. Appearing

in Fig. 4. 12 are complicated space-filling trajectories (called by Kelsall
"quasi-trapped" orbits) as well as particle paths exhibiting the magnetic

mix.por effect.

Extension to General Axisymmetric Fields

If the Stormer radius [given by Eq. (4. 10)] is comparable with the

dimensions of the coil producing the magnetic field, then the analysis of

shielding effectiveness based on the dipole approximation given above is no

longer valid. Since this situation obtains when reasonable values of dipole

strength (= 1012 gauss cm 3 ) and proton kinetic energy (= 1 Bev) are considered,

it is worthwhile to indicate how the shielding calculations can be extended to

include all physically realizable axially symmetric fields.

An axially symmetric magnetic field can be derived from a vector

potential having only an azimuthal component which is independent of the

- coordinate. In cylindrical coordinates (a, , z),

i A+(0, (4. 64a)

The vector potential of an axially symmetric current distribution is propor-

tional to the dipole moment a of the distribution, so that we can write

4,A
Am&e+. (4. 64b)

in which the quotient A /a does not involve the dipole moment explicitly.

The energy of a charge in a static magnetic field remains constant as

before. With the vector potential given by Eq. (4. 64) one obtains for the
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equation of motion, instead of (4. 8),

L . (4.65)

This equation may be written in dimensionless form by reintroducing the

Stormer unit Cat defined by Eq. (4. 10), but the simple interpretation of the

Stormer unit as the radius of a circular orbit in the equatorial plane of the

current distribution no longer holds as in the dipole case.

The axisymmetry permits a generalization of the angular momentum

conservation expressed by Eq. (4. 13). The Lagrangian function for the general

axially symmetric case, is in cylindrical coordinates,

"4iL ( Bi'+ ' ")] 4A(")(4.66)

instead of (4. 12). Since the Lagrangian is independent of 0, the momentum

conjugate to 0 is conserved. An expression for this momentum is

rt ;- E ["'".+ C$c 0h A ( J21...V C$.t (4.67)

Equation (4. 14) introducing the Stormer angular momentum constant y has

been used unchanged, and the interpretation (4. 16) of ' in terms of the impact

parameters P0 and X remains valid in the general case providing the vector

potential goes to zero at infinity.

The forbidden regions may be obtained by rearranging Eq. (4. 67) in a

form analogous to (4. 15):

+2y (4.68)
V 0
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Since Q is the ratio of the azimuthal component of velocity to the total speed,

its magnitude must be less than or equal to unity. Those points (ed, 0, z) for

which IQ(Y ) 1 is greater than unity are forbidden to all particles having

angular momentum characterized by I=-'Y '. So the forbidden regions are

given by

-1 (4.69)

In the dipole field, a point where the vector potential is arbitrarily

strong can always be found in a sufficiently small neighborhood of the origin,

so that a forbidden region A(Y) exists for all values of Y.. If in the case of

a finite current distribution it should happen that the vector potential has no

singularities, then it is no longer clear that such a forbidden region need exist

for certain values of Cst and Y. This requires examination for each case

separately.

A further requirement for the existence of an absolutely shielded region

(a region protected from all particles, independent of their values of angular

momentum) for a given particle energy and dipole moment is a topological

behavior of A(1) and B(b) for changing ' analogous to that shown in Fig. 4.5

for the dipole case. Although particles in nature have a distribution of energies,

and a region totally shielded against particles of a certain energy may be only

partially shielded against particles of higher energy, still it is felt that the

existence of a completely protected region for particles of moderate energy

is important for any magnetic shielding system.

There are presently two cases of axially symmetric fields of the

type (4. 64) more complicated than the dipole field about which something of

the shielding properties are known. The first is the field of a single turn,
77

considered by Levy. The vector potential of this field has a singularity at

the wire, so that a forbidden region of type A(Y) exists for all Y. If the coil

radius is much longer than the Stormer radius the volume of the resulting

(toroidal) shielded region becomes very small. This feature gives an indica-

tion of similar effects to be expected when more complicated current
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distributions are considered. In practice the large currents required

cannot flow in the infinitesimally thin single turn, but the required field

can be approximated very simply by making the conductor in the form of a

hollow tube which just fits inside an absolutely forbidden region for particles

of some chosen energy. This can be done in cases where a radial cross-

section of a forbidden region approximates a magnetic field line reasonably

closely. Difficulties with this design include the necessities of providing

openings for access to the passenger compartment and surrounding the

crew space with cryogenic helium. Distortion of the field sufficient to

cause interference with the shielding could result from straightforward

attempts to solve these difficulties.

A second example, on which work has recently begun at our laboratory,

is the field of a cylindrical solenoid whose dimensions are not small compared

with the St'rmer radius. Now the shielding provided by an ideal dipole can be

determined simultaneously for all values of particle energy and magnetic

moment because all such problems can be scaled in terms of the Stormer

unit-we have a "zero-parameter family of solutions". With the single turn

the ratio of coil radius to St'rmer radius enters, and one has a one-parameter

family of solutions. In the case of a cylindrical solenoid an additional parameter,

the ratio of radius to length of the coil, appears, and a much more intricate

two-parameter family of solutions is obtained. In the single-turn case, the

ratio of coil radius to Stormer radius can be fixed by minimizing the structural

weight for a given shielded volume. It is to be expected that similar optimi-

zation procedures would be able to select a particular radius to length ratio

for the cylindrical solenoid.

Whereas an expression for the magnetic field of a cylindrical solenoid
96

is known for points both on and off the axis, an expression giving the vector

potential in closed form everywhere does not seem to be available in the

literature. Accordingly we outline here the derivation of an expression for

A (WD, z) appropriate to a finite solenoid in terms of elliptic integrals.

The vector potential of a single turn of radius R carrying a current I

is, at a point (a%, 0, z) (Reference 2, p. 270)
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The potential of a cylindrical current-sheet of length L constructed from a

large number N of circular turns each carrying a current I is obtained by

integrating this expression in the axial direction

L -Lit C~a

I.. f (4. 70)

In the last way of writing the formula a = 7 R2 NI has been used to evaluate

the dipole moment of the current-sheet, a change of variables = z - z' has

been made, and the notation

2. -(4.71)

Vr, = -a- -,LL

has been introduced. The integration with respect to S can be done first.

Then an integration by parts can be performed to remove the resulting

logarithnic expression; the result is

wL e+ eAu.e 41+

Multiplying numerator and denominator of the integral by the expression

(q z + Z + RZ - ZRZ cos 4) 1/ 2 - , simplifying, and noting that the term not

involving j drops out when evaluated at the limits + and , we obtain

for the vector potential
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where

By means of the substitution t = cos $ it is possible to break up the integral
I (,) into three simpler integrals

(4.74)

where

'D=-- %"*

The integrals in (4.74) can be expressed in terms of complete elliptic
integrals of the first, second, and third kinds, respectively. Using Formulas
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234.00, 234.06, 315.02, 234. 18, and 339. 01 of Reference 95, we get

].(' KMk (4. 75)

2.

Xd. )-Y [L -K(k)- E(V) (4.76)

k (.g)d< du

- 0+ ,(4.78)

k' (1 - k2 ) 1 / 2 is the complementary modulus, and

(4.79)

Substituting into Eqs. (4. 74) and (4. 72) we obtain the expression for the vector

potential of a solenoid of radius R and length L in the form

A4s10 }(4.80)
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Equation (4. 80) can be put in a form more convenient for calculation

by using Formula 410.01 of Reference 95 to express the complete elliptic

integral of the third kind in terms of complete and incomplete elliptic

integrals of the first and second kinds:

Here

(4.82)

and

- Ao(4,0)- E(L)FL4,I)4 K(k)E(*, k)-K(k)F(4,k',) (4.83)

(called "Heuman's Lambda Function") is a tabulated function (Reference 95,

pp. 344-349).

In the equatorial plane z 0 and Eq. (4. 81) reduces to

k '-s T ( + k ) j (4. 84)
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where now

k'= =+ (4. 85)

For L = 0 Eq. (4. 84) reduces to the expression given by Smythe (Reference 2,
p. 271) for the potential of a single turn with 7 = 0. Also, when ', z >>R, L

Eq. (4. 81) reduces to the expression (4. 3) for the vector potential of a dipole

field.

A plot of the vector potential (4. 84) for z = 0 as a function of radial

distance is given in Fig. 4. 13. Since neither of the two values of k2 in the

equatorial plane given by Eq. (4. 85a) can equal unity (except for L = 0),

Eq. (4. 84) for the vector potential contains no singularities. Certain shielded

regions A('i) will shrink to zero for sufficiently high values of particle energy.

Detailed examination of the shielded regions is necessary for a range of
values of R/Cst and L/R.

The expression (4. 80) for the vector potential everywhere does contain

a singularity at z = L/2, 4f = R, i. e. , around the edges of the solenoid.

Thus the edges of the solenoid must fall within a forbidden region.

The inequalities (4. 69) for a cylindrical solenoid are much more compli-

cated than the corresponding ones for the dipole or the single turn, so that

determination of shielded regions for a solenoid by methods analogous to those

used in the other cases is difficult. Fig. 4. 14 shows the shielded regions for

the case R/L = 1. 00, R/Cst = 0.40, and Y = - 1.03. The inner forbidden

region A(i) is a torus centered roughly on the equatorial plane and the circum-

ference of the solenoid. The singularity at the rim of the solenoid falls within

the outer forbidden region B(Y), which sends down a protuberance to meet it.

Further information concerning the forbidden regions of solenoids must
await the programming of the problem for a large-scale digital computer.
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5. MAGNETIC SHIELDING- MAGNET DESIGN

Characteristics of Superconducting Materials

The recent discovery of materials which remain superconducting in

strong magnetic fields opens up the possibility of shielding electromagnets

aboard space vehicles. The reason for the importance of superconductors in

this context is that power is dissipated if the windings are made of an ordinary

conductor such as silver or copper. As the current flows through the con-

ductor the electrical energy is converted into (Joule) heat due to the resistance

of the metallic path. If the magnet is to operate at high field strengths, or if

the volume of the intense field region is to be large, both of which conditions

would obtain in magnets used for spacecraft shielding, then the energy losses

due to Joule heating represent major practical problems. Also the weight of

the large volume of ordinary coaducting material necessary to sustain the

required fields would make the use of non-superconducting magnets unfeasible

for space vehicle applications. In summary the reasons which make super-

conducting magnets mandatory for spacecraft shielding are

(1) The power requirements are kept at a minimum; no electrical power

is required to sustain the magnetic field once the current has been started.

(2) The weight requirements are minimized since the cross section of

wire necessary to transmit a given current is much smaller than that of an

ordinary conductor.

The most promising of the new superconducting materials are the

niobium-zirconium alloys and the niobium-tin intermetallic compound Nb 3 Sn.86

These materials have been discussed in the open literature by Kunzler and
85

members of his group at Bell Laboratories. Most of the information used

herein concerning these materials has been taken from the review article by
86

Kunzler. While it is to be expected that progress will continue in the

development of superconducting materials, the design procedures for solenoids

will remain essentially the same. The data regarding the characteristics of

the superconductors will have the same form although the numerical values

will probably change. Accordingly we give estimates based on niobium-zirconium

or niobium-tin using data presented by Kunzler's group, but the calculations
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will be readily adaptable to solenoids constructed of other materials as they

become available.

From the standpoint of magnet design, the most useful information about

a superconductor is a plot of the critical current flowing through a given wire

sample as a function of the applied magnetic field. The critical current at a

given magnetic field strength is that current above which the wire sample loses

its superconductivity, and represents the maximum current that can be passed

through the sample at a given magnetic field. Often the current density or

current per unit cross sectional area corresponding to a wire sample is given

for comparison purposes between different materials.

The critical current density for various niobium-zirconium alloys is

given as a function of applied magnetic field in Fig. 5. 1. The physical quantities

which make the curves different from one another are the percentage of zirconium

in the alloy, the degree of reduction by cold-rolling, and the temperature. The

critical magnetic field (field above which the material loses its superconductivity)

of the niobium-zirconium alloys increases with increasing zirconium concen-

tration, reaches a maximum somewhere between 65 and 75 percent zirconium,

and drops rapidly thereafter. The critical current increases with decreasing

zirconium content, reaches a maximum between 25 and 35 percent zirconium,

and falls off rapidly at lower concentrations.

Although the critical magnetic field and current densities of niobium-

zirconium alloys are smaller than those of niobium-tin, the niobium-zirconium

alloys are ductile, easier to fabricate into wire, have a much higher tensile

strength, and in general are much easier to work with than the niobium-tin

compound. It is expected that most laboratory superconducting magnets for

use on the ground where weight is not a problem will have niobium-zirconium

windings.

The brittle intermetallic niobium-tin compound Nb3 Sn with its high

transition temperature near 180K was discovered by Matthias et. al. in 1954. 85

The high critical temperature suggested immediately that the critical field

might be high for this compound. This conjecture was strengthened by the

susceptibility observations of Bozorth et. al.; they concluded that the critical

field for Nb3 Sn might be as high as 70 kgauss at 4. 2 0 K. Investigations of the

current carrying capacity of Nb 3 Sn in high magnetic fields have been made
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using samples of bulk Nb 3 Sn and Nb 3 Sn "wire" samples. The bulk material

remained superconducting in a field of 88 kgauss with a current density of
2about 3000 amp/cm . The "wire" samples remained superconducting at

88 kgauss but could sustain a current density about 50 times as great as the

bulk samples. Current density figures for Nb 3 Sn are more reliable than for

other superconductors because the current flows in "filaments" throughout

the material rather than being concentrated near the surface; however, we

have given values of current in Fig. 5. 2 for the sake of convenience.

The so-called "wire" samples of Nb3 Sn may be prepared by taking a

rod of niobium about 1/4 inch in diameter and drilling a 1/8 inch hole through

it. The hole is filled with a mixture of niobium and tin powders in

stoichiometric proportion and the ends of the tube are plugged. The niobium

tube packed with the powders is reduced to a fine tube or "wire" form by

mechanical swaging. In the samples used at Bell Laboratories the outer

diameter of the tubing was 0. 38 mm and the core diameter was 0. 15 mn. In

this form the niobium and tin powders are unreacted and the outer tube can

be bent and otherwise worked into the form of a coil. Reaction of the elements

to form the compound Nb 3 Sn is done after forming is complete.

The critical current for Nb 3 Sn wires clad with niobium is given as a

function of applied magnetic field in Fig. 5. 2. The physical parameters which

characterize the curves are: the composition of the cores, the temperature at

which the reaction took place, and the temperature at which the measurements

were made. When ten percent more tin by weight than is required to form

Nb 3 Sn (assuming no reaction with the niobium tube) was added, the critical

current was considerably higher than for other cases. However, it was possible

to take only one experimental point, the one at 88 kgauss. If the curve

corresponding to this composition has a shape similar to the other curves in

Fig. 5. 2, then we may extrapolate critical currents as high as 50 amperes at

fields of about 50 kgauss for "wires" of the dimensions stated. The experi-

mental point under discussion was taken at a temperature of 4. 2 0 K, whereas

some of the other curves were taken at the somewhat lower temperature of

1. 5°K with improvement in current-carrying capability over than at 4. 20K.

For further discussion of the properties and the materials of super-

conductivity see, in addition to the references already given, Reference 97.

For alternative treatments of solenoid design, see References 88-91.
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Solenoid Parameters

In this section the physical parameters of a superconducting solenoid

to be used for space vehicle shielding are discussed. Those design variables

which we shall consider are the magnetic moment of the coil, the radius

and length of the coil, the cross sectional area of the superconducting wire

used in the windings and the electric current passing through a single turn

of the conductors. The magnetic moment of the coil is to be determined

from the size of the shielded region and the energy of particles against which

shielding is desired via the St~rmer distance as determined from studies

of particle trajectories. The radius and length of the coil are governed by

the shape of the desired shielded region; for calculations based on a dipole

field the length of the solenoid should be chosen small compared with the

Sturmer radius. The current chosen should be less than the critical current

for a wire of the assumed cross section operating at the chosen magnetic

field.

For shielding against protons of energy 500 Mev, it is necessary to
11 3have a magnetic moment of 6 x 10 gauss cm ; this gives a Stormer radius

of about 3. 8 meters (see Fig. 4. 3). It would be desirable to have a magnetic

moment of 6 x 10 12 gauss cm 3 ; for a proton of the above energy the Stormer

radius is about 13 meters. For an electron the Stormer radius corresponding

to a given magnetic moment is larger than for a proton of the same energy.

Thus a 500 Mev electron will have a St~rmer radius of 6 meters in the field
11 3of a dipole having a moment of 6 x 10 gauss cm . In nature the energies

of electrons are much lower than 500 Mev. For an electron of 1 Mev kinetic

energy, the Stormer radius for a dipole moment of 6 x 1011 gauss cm 3 is

110 meters, and for 6 x 1012 gauss cm 3 it is about 350 meters. For electrons

of moderate energy the dipole model is capable of providing a good analysis

of the shielded volume. For high energy protons the dipole approximation

breaks down; for instance, for a proton having 1 Bev kinetic energy the

magnetic moment necessary to give a St*rmer radius of 10 meters is
12 3

5. 66 x 10 gauss cm , and magnets of reasonable weight giving such a

dipole moment would have to have dimensions comparable with the 10 meters

figure. Studies of particle trajectories in a dipole field have shown that the

region shielded against particles of a given energy is a toroid with major radius
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equal to about 41 percent of the Stormer unit corresponding to that energy.

However, a toroidal region whose major radius is 50 percent of a St 8 rmer

unit will be shielded against 97 percent of the particles of given energy, and a

toroid whose major radius is a full Stormer unit will be shielded against

about 70 percent of the particles of given energy.

For calculations of the weight of the superconducting material and the

structure needed to sustain the solenoid against magnetic forces, it is

necessary to have knowledge of the densities of the superconducting material

and the material used in the supporting structure. One must also know the

tensile yield strength of the structural material. From the standpoint of

weight, the most desirable superconductors are those with the smallest

ratio of mass density to critical current density for the magnetic fields

being used. In our examples we have chosen Nb 3 Sn, which has a density of

8.0 grams/cm3 and a critical current density of the order of 105 amps/cm 2

for magnetic fields of 105 gauss. The most desirable structural materials

are those with the smallest ratio of density to yield strength. It will be

shown later that the structure takes up about 90 percent of the solenoid mass,

so that the development of better structural materials is more important for

magnetic shielding than the discovery of better superconductors. The

material used in our examples is the titanium alloy Ti-6AI-4V ELI, which

has a density of 4.46 grams/cm 3 and a yield strength of 263, 000 psi.

The mass of the solenoid may be divided into three components: the

mass of the conductors, the mass of the supporting structure, and the mass

of the- cryogenic system. Although most of the mass is taken up by the

structure, we will also be concerned with the mass of the coil windings.

It will be assumed that the thickness of the windings and the spacing of the

turns are small compared with the other dimensions of the solenoid, so

that in effect we may regard the solenoid as a cylindrical current sheet.

This configuration is desirable in that it gives a large dipole moment for

a reasonable volume, although it is not to be regarded necessarily as

a final design. At first we will assume that the structure is intimately

associated with the windings, so that the geometry of the structure is essentially

that of the coil itself. This structure balances the forces tending to expand
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the windings azimuthally and to compress them axially. Later we will

consider a structure made of a series of thin disks having the same radius

as the solenoid and separated by compressive members. The disks balance

the forces tending to expand the windings both azimuthally and radially and

the spacing members balance the axial compressive forces.

Mass of the Conductors

We consider the magnetic field due to the cylindrical current sheet

of radius R and length L shown in Fig. 5. 3. The components of the field

in the radial and axial directions at a point (W, 4, z) in cylindrical coordinates

are given (in Gaussian units) by9 6

H.. " 4  L ' I k 1 " ' I is-

H (- NI " ( A-0) - k)] (5.2)

Here %= z + -L,-2

BI ] refai . ,, (5.3)

+- (&,+w~

N is the number of turns each of which carries a current I, E(k) and K(k) are

complete elliptic integrals, and A 0 (i9, k) is Heuman's function defined as

in Eq. (4. 83).

Putting 1 = 0 = z, we obtain the axial field at the center of the coil:

IW Nvr (5.4)
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Expressed in terms of the dipole moment a = ItR NI of the solenoid, this

field is

Ht (0, 0) =(.s

This is the expression for the field we shall use in determining the critical

current flowing through a single turn. Actually one should use the field at

the wire, given by the more complicated formulas (5. 1) (5. 2). For a coil

whose radius is half its length, Eq. (5. 2) shows that the maximum axial field

at the wire is about 1. 16 times the value at the center given by (5. 4)

(Cf. Reference 96). To offset this factor one should use somewhat conservative

values for the critical current density. Also the results of Kunzler et.al.

indicate that the maximum current-carrying capacity of Nb3 Sn increases some

50 percent from 4. 20K to 1. 50 K. 85

If we assume each turn carries a current Ic equal to the critical

current corresponding to the field (5. 5), then an estimate of the mass of

superconducting wire may be made as follows:

Mw=2(R rw v= tO'vfw/P., =2,%f I j,.(5.6)

Here Ww and fw are the cross sectional area and density of the supercon-

ducting wire. The quantity I c /q-w represents the critical current

density corresponding to the magnetic field at the center. It may be seen

from Eq. (5. 6) that the "figure of merit" for a superconducting wire material

is the ratio aw/.

As an example, we consider a coil having a magnetic moment

a = 5. 66 x 10 gauss cm (giving a Stormer radius of 10 meters for I Bev

protons), a radius of 400 cm, and a length 800 cm carrying a critical current

IC = 20 amperes through Nb 3 Sn wire V w = 8. 0 gram/cm 3 ) of cross section

O" = 1. 77 x 10 - 4 cm 2 (corresponding to a wire diameter of 0. 15 mm as
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reported by Kunzler). The magnetic field calculated from Eq. (5. 5) is

1. 23 x 105 gauss. The assumed value of Ic = 20 amperes at this field can

be taken as an extrapolation of curve I in Fig. 5. 2. The corresponding critical
4 2current density is jc = 1. 13 x 10 4 abamps/cm . We get for the mass m w of

the wire according to Eq. (5. 6) a value 20, 000 kg or about 44, 000 lb.

In the estimate above the wire was assumed to be uniformly wound both

radially and axially, so that each turn carried the same current. Now the

magnetic field varies considerably in the vicinity of the coil windings; it is

a maximum just inside the solenoid and decreases with distance from the

equatorial plane. Just outside the coil it has a value (large for short solenoids)

opposite in direction to that just inside (see Fig. 5. 4). Actually the disconti-

nuity in the field shown in the graph for a current sheet does not exist; instead

the field drops continuously but rapidly from its maximum just inside the

windings to its negative maximum just outside. Where the field is smaller

one may use a higher value of critical current and decrease the number of

turns in that region. The overall reduction in the amount of wire required

can be considerable-of the order of 30 to 50 percent, depending on the

dimensions and dipole moment of the coil. 89 For example, if we assume

that the critical current varies exponentially with the magnetic field

(This would appear as a linear plot in Fig. 5. 2) and consider the variation

of the field in the equatorial plane of the sample solenoid discussed above, we

obtain a reduced wire mass of about 30, 000 lb. A further reduction in the

wire mass could also be obtained if the variation of the field in the axial

direction were taken into account.

If one could operate at a temperature of 1. 5 K instead of 4. 2 K an
86

additional wire saving of about 30 percent should be possible. The use of

a variable wire composition may also reduce the mass somewhat by permitting

a portion of the tensile stress to be carried by the superconducting wire.

Mass of the Structure

The current-carrying elements of a high-field electromagnet are subject

to forces arising from j X H interaction with their own field. A contained

magnetic field H can be thought to exert a pressure H /87t normal to its

lines of force and an equal tension along its lines of force. A plot giving the

magnetic pressure Pmag = H /87[ in psi or atmospheres as a function of the
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magnetic field in gauss is shown in Fig. 5. 5. A magnetic field of 5, 000 gauss

is equivalent to a pressure of about 1 atmosphere. Because the pressure varies

directly as the square of the field, the magnetic pressure rises rapidly with

increasing field strength. The magnetic pressure corresponding to 100, 000

gauss is about 5, 780 psi. Fields of 106 gauss have magnetic pressures beyond

the working stresses of known materials and are therefore unrealizable, at

least in the steady state.

Although in general the coil windings cannot support much tensile stress,

they can and do support compressive stresses. To the extent that this reduces

the compressive stresses in the structure, the estimates given below for the

overall structural mass could be reduced.

The structure we shall consider first is a thin-walled cylinder having

the same radius and length as the solenoid. This structure is supposed to be

closely associated with the coil windings; the means of fastening the windings,

to the structure and providing channels for liquid helium coolant will not be

discussed here.

Because of the cylindrical symmetry the stresses on the structure can

be res-olved into three principal components: an azimuthal tensile stress S t ,

an axial compressive stress S and a radial compressive stress S The

principle stress is St, which arises from forces in the structure required to

balance the outward radial stress produced by the magnetic field. Calculation

of the structural mass may be simplified by neglecting the radial compressive

stress SR by comparison with St , This may be justified as follows: The

compressive radial stress is at most equal to the magnetic pressure H2 /8w

at the coil windings, which is limited by the critical field H c of the super-

conducting wire. For a value Hc equal to 10 5 gauss this pressure is about

5780 psi. On the other hand, the tensile stress St is of the order of the yield

strength Sy of the structural material. For the titanium alloy Ti-6A1-4V ELI

considered in the present application Sy is over 250, 000 psi, so that S R is

at most 2 or 3 percent of S t . If the structural material had a considerably

*The tensile yield strength Sy is the maximum stress that can be
developed in a material without causing more than a specified deformation or'
set; a set of 0. 10 or 0. 20 percent (which means an elongation of 0. 001 or
0. 002 in per in) is considered permissible for metals.

118

1



smaller yield strength, the radial compressive stress could not be neglected.

The axial compressive stress may not be neglected in general. It

contributes to the structural mass because it in effect reduces S t from its

maximum value S . To compute this effect we utilize the relation from

plasticity theory9T

( S sj, (5.7)

To estimate the mass of the structure we ignore detailed design features

and restrict our consideration to overall forces and average stresses. These

can be determined accurately from the expression for the total magnetic

energy Emag of the system. We have

E (5.8)

where I is the current in a single turn and o [not to be confused with the

Lagrangian I of Eqs. (4. 12) and (4. 66)] is the inductance of the coil

[Reference 98, Eq. (2. 26)]

97 N [KM~- EMk + . -{EWk-kj]. (5.9)-3D

Here K(k) and E(k) are complete elliptic integrals with modulus k given by

(5. 10)

and k 2 = 1-k [Notice that k has a somewhat different form here than the

k in Eqs. (4. 78) (5. 3)]
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The average pressure P tending to expand the cylinder radially can

be obtained by equating the change AEmag in magnetic energy due to an

expansion A R of the solenoid-and-structure to the radial force 2WRLP times

the displacement 6 R. Thus

p= (5. 1)
2.WRL )R

Substituting Eqs. (5. 8) (5. 9) into Eq. (5. 11) and performing the indicated

differentiation, we obtain

P=E( )-k.

The pressure on the cylinder must be balanced by the tensile stress within

the cylinder; accordingly we use the hoop-stress formula

tS = R P, (5.13)

where t is the thickness of the cylindrical shell, to obtain the azimuthal

tensile stress.

We get compressive axial stress in a similar manner. The

compressive force on the cylinder is

,a E (5. 14)
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whence

T- --JEi )-k K~k) Ek]*SL 7 3 R(5.15) '

Dividing (5. 15) by (5. 13) with (5. 12) substituted, we obtain an expression

for the ratio S L/St:

S1. 2 k'  KMk- E(k). (5.16)

St 3 3k- E(k)-k

This ratio is plotted as a function of L/ R in Fig. 5. 6. For very short

solenoids S L/S t is near zero; the longitudinal compressive stress is small

compared to the azimuthal stress. For long solenoids SL IS tends

asymptotically to the value 0. 5; thus the longitudinal stress is at most

one-half the azimuthal stress.

The ratio S7/St is obtained from S L/S t by means of Eq. (5. 7); ISt

is also plotted against L/R in Fig. 5.6. For very short solenoids Sy /St tends

to unity; the longitudinal stress is not effective in reducing SV. The ratio

S YIS increases slowly as L/R increases and tends asymptotically toyt
-F..75 = 1. 324 for large L/R. Thus the maximum increase in structural mass

required in view of longitudinal compressive effects is about 32 percent,

and this will occur only for very long solenoids.

The expression for Sy/St may be used in combination with the hoop-stress

formula (5. 13) to obtain the thickness t of the cylindrical shell in terms

of the working stress S y. The structural mass is

Y 2w R Lt fgt (5. 17)

where fst is the density of the structural material. If we now substitute

fat
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for t and introduce the magnetic moment a = 'M R 2 NI, we have finally

le+g L S f [E(k)-k], (5.18)
7r R' St (StT kzLJ

where S L/S t is given by Eq. (5. 16).

The variation of mst with L/R is shown in Fig. 5.7. As an example,

the mass of a solenoid designed to shield against 1-BeV protons, and having
101Z 3

a magnetic moment of 5.66 x io12 gauss cm , a radius of 400 cm, and a

length 800 cm is found to be 180, 000 kg or 394, 000 lb. The thickness of the

structure is about 20 cm. For these calculations we have used an extrapolated

value

S , . )<. -' " S I e

appropriate to the titanium alloy Ti-6A1-4V ELI at a temperature of 40 K.

If we divide Eq. (5. 18) for the structural mass by the expression for

magnetic energy obtained from (5. 8) (5. 9), we obtain a relation of the form

in which the factor g(L/R) depends on the shape of the coil. For a given

L/R, the structural mass is proportional to the magnetic energy. If however

L/R varies, then m st/Emag will also vary, by a factor of about 2. 6 as we

go from a flat solenoid to a very long solenoid. Thus the structural mass is

not, strictly speaking, proportional to the magnetic energy stored in the

coil, except for coils of constant shape. In what follows we will see that

the factor g depends also on the structural configuration chosen, and for

suitable structures can actually be made less than unity.
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We have -een that for the solenoid there are two principal forces to be

balanced by the supporting structure: an outward radial force 9 E mag /R

and an inward axial force - E mag/?L. In the analysis presented so far

a simple structure consisting of a thin cylinder (C1 ) encasing the solenoid

windings was assumed for the support of both of these forces. It is apparently

possible, however, to find somewhat more complicated structural configurations

of smaller mass that can support the forces on the solenoid.

Consider a structural arrangement consisting of a cylinder C2 at the

windings supporting the axial force plus a series of disks inside this cylinder

supporting the radial force. Let td represent the total thickness (in the axial

direction) of all the disks. Considering the radial stresses on the disks

alone, we have

2w R

The thickness t of the cylinder C1 described previously is given by

27R -t St = 9E"
9R

The ratio of the volume of the disks to the volume of the cylinder C1 is

VdnhMME ci sIks =-IV .tA~ I St (5. 19~)

Vi"~t04 i. 27r KL+ z S3

Now consider the cylinder C2 necessary to support the axial force,

and let tc represent its thickness. Then*

*We are assuming (see Reference 93) that S represents the maximum
compressive stress as well as the maximum tensile stress.
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Comparing this with the corresponding relation for the cylinder C 1 withstanding

both axial and radial stresses

2 L

we find for the ratio of the volume of C 2 to that of C1

Let us first apply this design to the case of a long solenoid. Noting

from Fig. 5. 6 that St = 0. 76 S for a long solenoid, we see from Eq. (5. 19)

that the volume of the disks is about 0. 38 that of the cylinder C1.. Also for

the long solenoid S L % 0. 5 St; hence the mass of the cylinder C2 is, according

to Eq. (5. 20), also 0. 38 times the mass of C1 . Thus the mass m't of the new

structure consisting of a thinner cylinder C2 and an array of thin connecting

disks is only 0.76 of the mass mst of the single cylinder C1.

Consider now the situation for shorter solenoids, As L/R decreases

S L decreases and S t approaches S . For a very flat solenoid (L<<R), SL
becomes only a few percent of S t , so that the mass of C2 becomes small in

comparison with that of the disks. Hence the structural mass is approximately

that of the disks alone, or about half the mass of the corresponding cylinder C1 .

From the foregoing we conclude that the use of a structure consisting of

a cylinder at the solenoid windings and connecting disks inside can give a

mass reduction over a single cylinder varying from about 24 percent for

long solenoids to almost 50 percent for flat solenoids. In the case of the

solenoid for which L = 2R, the saving is approximately 27 percent.

It is of special interest in the case of the very flat solenoid to compare

the mass m' of the supporting disk structure with the magnetic energy ofst
the coil. (This comparison is also applicable to the single-turn magnetic
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shield proposed by Levy 77). For such a coil we have approximately

M4E '= rRW(A+~j

S3

where A = log (8R/L). Hence

A- s,

For a very flat solenoid the numerical coefficient approaches one-half.

The results above are in contradiction to, a theorem of Petschek and

Longmire (presented by Levy 9 9 ) which states that

-t (5.22)

Extending an analysis by Parker10 0 on so-called force-free coils, Petschek

and Longmire obtain the following interesting relation between the magnetic

energy and the trace SiU of the mechanical stress tensor S..:

M 4yA - Sj l (5.23)

In deriving consequences of this relation Petschek and Longmire assume

that each of the principal stresses is supported by an individual structural

member; on this basis Eq. (5. 22) is obtained. The possibility of a structural

element supporting a tensile stress in more than one direction has apparently
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been overlooked. For example, if each structural element were under tensile

stress in two principal directions we would have, instead of (5. 22),

-i E (5.24)

If a structural configuration could be devised such that each structural

element were under maximum isotropic tensile stress, the numerical factor

would be further reduced from one-half to one-third.

An analysis of the supporting disks used in the design above shows them

to be under equal tensile stress S in both the azimuthal and radial directions.y
Thus neglecting the compressive axial stress (which for a flat coil is only a

few percent of S y), we obtain from the relation (5. 23)

whence

VA~~ ~ E (5.25)

The results presented above are extremely important, for it means

that the structural mass can be reduced considerably-- -27 percent for the

solenoid in which L = 2R and approximately 50 percent for a flat solenoid.

We find therefore that for I-BeV protons the weight of a superconducting

magnetic shield may be made almost an order of magnitude smaller than the

weight of a passive shield. Furthermore, if a design can be found for which

the structural material is subjected to a tensile stress in each of the principal

directions, the structural mass could be reduced even further.
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6. CONCLUSIONS

Feasibility

The most important parameters for four sample cylindrical solenoid

designs are given in Table 6. 1. It is to be emphasized that these examples are

given merely to show the way in which the magnetic field, wire mass, and

structural mass vary as the dimensions of the solenoid are changed, and in no

way represent optimized designs suitable for fabrication. In all four designs the

magnetic dipole moment has been held constant at 5. 66 x 1012 gauss cm 3.

This gives St6rmer radii of 10 meters for I-Bev protons, 12. 6 meters for

500-Mev protons, 19. 5 meters for 100-Mev protons., and 345 meters for

l-Mev electrons.

An important conclusion to be derived from Table 6. 1 regarding the

shielding against high-energy particles is that as the radius of the solenoid

is made smaller than about 0.4 Stormer radii the mass of both the windings

and structure becomes excessive. This is particularly true for Example 4,

where the length is also small compared with the St'rmer radius. It is not

clear at this time whether or not the increased mass of the system is

accompanied by a corresponding increase in the volume shielded against high

energy (--, 1 Bev) particles.

All of the shielded volume estimates in Table 6. 1 are made using the

dipole approximation except for the figure (^j50 meters 3 ) given for l-Bev

protons in Example 3. This has been obtained using the plot of the actual

shielded region of a cylindrical solenoid shown in Fig. 4. 14. The volume was

estimated by considering a cross section of the toroidal shielded region as an

ellipse and multiplying the area of this ellipse by the circumference 27c R of

the solenoid. The blank spaces in the shielded volume categories represent

gaps in our knowledge of the shielded regions of solenoids whose dimensions

are not small compared with the Stgrmer radius.

The best case for magnetic shielding can be made for vehicles having

cabin shapes compatible with the toroidal shielded regions of axially symmetric

current distributions. For vehicles having a certain amount of aerodynamic

streamlining or for cylindrical vehicles, it may be more advantageous to

consider shielding magnets having a larger ratio of radius to length. For such
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magnets and particle energies of interest the dipole analysis is not a good

approximation, and it would be desirable to carry out an exact analysis of

shielded regions for a cylindrical coil before making any final statements

concerning magnetic shielding for such vehicles.

Comparison With Passive Shielding

Magnetic Design No. 4 of Table 6. 1, capable of providing complete

shielding against 1-Bev protons, was selected for comparison with passive

shielding. The weight of the magnetic system, assuming that it uses niobium-tin

superconductor and cylindrical disk structure, would be of the order of

417,000 lb. Using range-energy data and neglecting the effects of secondaries,

an estimate was made of a passive shielding weight for the same shielded

volume. For a polyethylene shield, about 334 grams/cm 2 are required to

stop 1-Bev protons. The region completely shielded by the magnetic system

against such particles would be toroidal and would have a volume of about
3 3

50 meters . For a spherical volume of 50 meters (radius 2. 28 meters) the

weight of the polyethylene shield is 2. 195 x 105 kilograms, or about

482, 000 lb. If the additional shielding necessary to protect against.secondary

neutrons were taken into account, the passive shield would be heavier than

this.

The prospects of magnetic shielding as a weight-saving device compared

to passive shielding appear good, particularly when the present work is

correlated with that of Levy (References 77, 99). About 80 percent of the

mass of a magnetic shielding system would be taken up by the structure. The

mass of the structure is proportional to the ratio -fst/Sy of density to yield

strength of the structural material. Levy considered a single turn coil (a

cylindrical solenoid of negligible length) and found that, for an optimized ratio

of coil radius to Stormer radius, and using aluminum as the structural material,

the mass of a magnetic shield could be made about a factor of 2 less than the

mass of a comparable water shield for l-Bev protons (neglecting secondaries).

For aluminum the ratio fst /Sy is about 7. 71 x 10"10 grams/erg. The use of

structural materials with a more advantageous "figure of merit" would give a

smaller mass for the active shield. For instance, the titanium alloy

Ti-6AI-4V ELI considered in Section 5 has a pst/Sy ratio of 2.46 x 10" 10 grams/erg
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at 40 K. A single-turn magnetic shield using Levy's structure could be made

to weigh about a factor 3 less than Levy's estimate using this structural

material, or about a factor 6 less than a corresponding passive shield. If

the disk structure utilizing tensile stresses in two directions were used, a

factor 1. 7 could be gained. (taking into account the compressive stresses

neglected by Levy). This means that a single-turn magnetic shield could be

made about I/10 of the mass of a water shield for l-Bev protons. For lower

energy particles Levy's calculations indicate that the magnetic shield would

not be favorable compared to the passive shield, but when the considerations

outlined above are taken into account, it may be conciuded that magnetic

shielding would have a weight advantage over passive shielding for low-energy

protons also.

The use of solenoids of finite length could give a further weight advantage

over the single-turn shield. According to Fig. 5. 7 the mass of a cylindrical

solenoid shield with fixed magnetic moment and fixed ratio Fst/Sy goes down

as the ratio of length to radius increase's. Basically this is because, as a

cylindrical coil is lengthened with the dipole moment remaining constant, the

field strength decreases. An infinitely long coil would have an infinite dipole

moment but only a finite magnetic field inside. For a given ratio of coil radius

to Stormer radius (which depends only on the particle energy and the dipole

moment of the coil) the shielded volume also goes down as the length of the

coil is increased, but the way in which this variation takes place has not yet

been studied. By determining the coil parameters so that the ratio of shielded

volume to coil mass is optimum, it might be possible to gain a further advantage

over passive shielding using a cylindrical coil of some finite length.

Recommendations for Future Work

The present study indicates that magnetic shielding is feasible and

warranted, and can probably be accomplished with the technology of 1968 or

1970. Before detailed engineering design efforts are made, however, it will

be necessary to consider the following further problems:

1. A computer analysis of the forbidden regions should be made for a

large number of cases of the cylindrical solenoid. The dipole analysis is

valid only for values of magnetic moment and particle energy such that the
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Stormer radius is much larger than the dimensions of the coil. The analysis

of the forbidden region for a cylindrical coil, for Stormer distances not

small by comparison with the coil radius or length, would be valuable for

determining the optimum shape of coil and strength of field for a particular

shielding situation.

2. A study of partial shielding should be made on the basis of particle

trajectories in the magnetic field of a cylindrical solenoid. The solenoid

chosen should be the one with optimum shielded volume to mass ratio selected

in Part 1 above. Also calculations of the particle flux should be made for this

cylindrical solenoid using a sequence of forbidden regions based on a realistic

spectrum of particle energies. Thus the reduction in dosage accomplished

by a magnetic shield over the unshielded dosage could be calculated explicitly.

3. A more thorough comparison of magnetic shielding with passive

shielding requires more information on the effect of secondaries. This needs

to be done both for the active and the passive cases because the more promising

cylinder-disc structure for magnetic shielding has its important components

exposed to bombardment by the primary charged particles.

4. An integrated structural analysis should be made to take into account

such effects as the structural properties of the superconducting wire, nonuniform

winding to decrease the mass of the conductors, distribution of current density

in the nonuniform magnetic field to best take into account the magnetic field-

critical current relationships of the superconductor, etc. It is to be expected

that a considerable saving in payload weight of the shielding system could be

accomplished by such a careful analysis of the solenoid construction.

5. Analysis of the structural mass and shielded regions should be made

for other current configurations. It is perhaps not appropriate to speculate at

this time on the explicit form of these current-carrying elements, but it is

possible that more favorable shielded volume to structural mass ratios could

be obtained by designs more complicated than the cylindrical solenoid or

(its special case) the single-turn coil. Of greatest interest are the possibilities

of approaching more closely the limiting factor 1/2 in the theorem (5. 24) by

using a structural design under tension in two directions.
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6. A laboratory investigation into the properties of, and the fabrication

in long lengths of niobium-tin wires, or wires of newer superconductors having

higher critical fields and current densities, should be made. Ultimately this

should involve understanding the structure of hard superconductors better.

The effect of various mechanical treatments, fabrication, and heat treatment

on the superconductors should be investigated so that ways of making materials

with the optimum electrical and tensile properties may be discovered.

7. A fairly large-sized model superconducting solenoid using niobium-tin

wire should be constructed and tested in the laboratory. This is needed to

give better insight into the problems of startup, cryogenic systems, safety

factors when the superconductors accidently become normal, and to test

explicitly the functioning of the magnetic shielding system.
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